
ACCELERATED FRAMEWORK FOR

SELECTIVE BLURRING WITH OCCLUSION

HANDLING USING DEPTH MAPS

Thesis

Submitted in partial fulfilment of the requirements for the degree of

MASTER OF TECHNOLOGY (RESEARCH) in

INFORMATION TECHNOLOGY

By

SUBHAYAN MUKHERJEE

(Reg No: 121114IT12F01)

DEPARTMENT OF INFORMATION TECHNOLOGY

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA

SURATHKAL, MANGALORE - 575025

OCTOBER 2014

DECLARATION

By M.Tech (Research) Scholar

I, SUBHAYAN MUKHERJEE hereby declare that the Research Thesis

entitled “ACCELERATED FRAMEWORK FOR SELECTIVE BLURRING

WITH OCCLUSION HANDLING USING DEPTH MAPS” which is being

submitted to the National Institute of Technology Karnataka, Surathkal in partial

fulfillment of the requirements for the award of the Degree of M. Tech (Research) in

Information Technology is a bonafide report of the research work carried out by me.

The material contained in this Research Thesis has not been submitted to any

University or Institute for the award of any degree.

Place: NITK, Surathkal Subhayan Mukherjee

Date: OCTOBER, 2014 (Reg. No.: IT12F01)

CERTIFICATE

This is to certify that the Research Thesis entitled “ACCELERATED

FRAMEWORK FOR SELECTIVE BLURRING WITH OCCLUSION

HANDLING USING DEPTH MAPS” is a bonafide work carried out by

SUBHAYAN MUKHERJEE, (REGISTER NO: 121114IT12F01) as the record of

the research work carried out by him, is accepted as the Research Thesis

submission in partial fulfilment of the requirements for the award of degree of

M.Tech (Research) in Information Technology.

 Prof. G. Ram Mohana Reddy

(Research Guide)

 Prof. Ananthanarayana V. S.

 (Chairman - DPGC/DRPC)

ACKNOWLEDGEMENT

I take this opportunity to express my deepest gratitude and appreciation to all

those who have helped me directly or indirectly towards the successful completion of

this research thesis.

First and foremost, I would like to express my sincere gratitude to my guide

Prof. Ram Mohana Reddy Guddeti, Department of Information Technology, National

Institute of Technology Karnataka, Surathkal. His advice, constant support,

encouragement and valuable suggestions help me throughout the course of my

thesis work. Without his continuous support and interest, this report would not have

been the same as presented here.

I express my deep gratitude to Prof. Ananthanarayana V. S., Head of the

Department of Information Technology, National Institute of Technology Karnataka,

Surathkal for his constant co-operation, support and for providing necessary facilities

throughout the M.Tech (Research) program.

I would like to take this opportunity to express my thanks towards the teaching

and non-teaching staff in the Department of Information Technology. I am also

grateful to all my classmates for their help, encouragement and suggestions.

I am thankful to my mother who continuously supported and encouraged me

in every possible way for the successful completion of this thesis, and to my deceased

father, who had always motivated me strongly to pursue a good academic career.

— Subhayan Mukherjee

ABSTRACT

In recent times, 3D videography, and particularly, 3D movies have become very pop-
ular. A 3D video is recorded by capturing temporal 3D image sequences of the same
scene using two 2D video recording units separated by a distance similar to that be-
tween the two human eyes. Later, when both the left and right streams of the 3D video
are played simultaneously, we get the impression of depth. However, depth information
can be extracted from 2D videos as well using certain visual cues present in the video
frames like variation of focus, contrast etc. Moreover, using special depth cameras like
Microsoft Kinect, it is possible to record the depth of a scene while shooting the scene.

Depth-of-field blurring is a technique which has been extensively used in photo-shoots
and video recordings. The depth of field (DOF) of an image is the distance between
the nearest and farthest objects in a scene that appear acceptably sharp in that image.
Nowadays, cameras have DOFs that correspond to a single slab that is perpendicular
to their optical axis. However, such a configuration poses severe limitations on how
we can selectively focus multiple subjects situated at largely differing depths, and on
how we can handle similar challenging focusing scenarios which require a flexible DOF.

Here, the primary intention is to propose a framework to extract depth information from
3D images, and subsequently use that to control the DOF in new and powerful ways.
Attempts at post-processing 2D images to create special effects by altering the DOF
have been made, but in this respect, 3D is a relatively unexplored area. Furthermore,
image processing is an inherently computationally intensive task, and more so for 3D,
where we have to process a pair of images instead of just one. Hence, the processing
needs to be carried out using parallel algorithms to reduce the execution time. Lastly,
the effectiveness of depth estimation from 2D images, 3D images and Microsoft Kinect
depth camera are also compared qualitatively. It is believed that flexible DOF imaging
can open a new creative dimension in videography and lead to new capabilities in med-
ical, forensic and scientific imaging, vision, and graphics.

Keywords : 3D Video Post-Processing, 3D Camcorder, Stereo Disparity, Microsoft

Kinect, Depth Camera, Flexible Depth-of-Field, Depth Blurring, Selective Blurring,

Occlusion Handling, Parallel Processing, Depth Map

Contents

List of Figures . i
List of Tables . iv
Abbreviations . v

1 INTRODUCTION 1
1.1 Human Depth Perception . 1
1.2 Videos from 2D Camcorders . 2
1.3 Videos from 3D Camcorders . 2

1.3.1 Anaglyphic Processing . 2
1.3.2 Polarized Light System . 3
1.3.3 Active Shutter System . 3

1.4 Microsoft Kinect Depth Camera . 3
1.5 Depth of Field (DOF) . 4

1.5.1 Digital Techniques Affecting DOF 4
1.6 Depth Maps . 5
1.7 Depth Estimation . 6
1.8 Parallel Framework . 7

1.8.1 OpenMP . 8
1.8.2 MPI . 9
1.8.3 Pthreads . 9
1.8.4 GPGPU . 9

2 LITERATURE SURVEY 10
2.1 Related Work . 10

2.1.1 Depth-based Selective Blurring 10
2.1.2 Depth Estimation and Depth Maps 11
2.1.3 Depth Estimation Using Kinect Depth Camera 20
2.1.4 Parallelizing the Depth Map Extraction Process 21

2.2 Outcome of Literature Survey . 22
2.3 Problem Statement . 22
2.4 Research Objectives . 22

3 PROPOSED METHODOLOGY 24
3.1 Depth-based Selective Blurring using both CPU and GPU 24

3.1.1 Algorithm Design Perspective 24
3.1.2 Proposed Stereo Depth Extraction Algorithm 25
3.1.3 Depth-based Selective Blurring 30

3.2 Sequential Complexity of Depth Extraction Algorithm 31
3.3 Parallel Implementation of Depth Extraction Algorithm 33
3.4 Parallel Complexity Analysis of Depth Extraction Algorithm 33
3.5 Proposed Depth Estimation Error Detection Method 33

3.5.1 Algorithm Design Perspective 33
3.5.2 Algorithm Design Methodology 34

4 RESULTS AND DISCUSSION 38
4.1 Depth-based Selective Blurring . 38

4.1.1 Outputs of Proposed Method for Tsukuba Image 39
4.1.2 Qualitative and Quantitative Comparison with Ground Truth . . 41
4.1.3 Qualitative and Quantitative Comparison with State-of-Art . . . 43
4.1.4 Comparison of Serial Execution Time with State-of-Art 48
4.1.5 Depth-based Blurring of Tsukuba and Real-World Images . . . 50

4.2 Results of Parallel Algorithm using JTP and APARAPI 52
4.3 Results of Disparity Estimation Error Detection Approach 53

4.3.1 Proposed Evaluation Metric 54
4.3.2 Evaluation Methodology . 55
4.3.3 Quantitative Comparison of Outputs 57
4.3.4 Qualitative Comparison of Outputs 61
4.3.5 Graphical Analysis . 62
4.3.6 Outputs of Key Steps of Proposed Method 67

4.4 Comparison of Depth Estimation w.r.t 2D, 3D & Kinect Sensor 73

5 CONCLUSION AND FUTURE WORK 76

REFERENCES

PUBLICATIONS

BIODATA

List of Figures

1.1 Microsoft Kinect Depth Camera. 4
1.2 Summing of Eight Numbers in Parallel. 8

2.1 Block Diagram of Depth-based Selective Blurring. 11

3.1 Flowchart of Proposed Depth Extraction Algorithm. 25
3.2 Proposed Depth-based Blurring Block Diagram. 31
3.3 Proposed Depth Estimation Error Detection Method. 34

4.1 Segmentation of L Values of Left Image using K-Means. 39
4.2 Segment Boundary Detection and Refinement. 40
4.3 Disparity Map Reconstruction from Boundary Disparities. 41
4.4 Resultant Depth Map Compared to Middlebury’s Ground Truth. 42
4.5 Sawtooth Depth Map for Proposed Algorithm (left) and Middlebury’s

Ground Truth (right). 44
4.6 Venus Depth Map for Proposed Algorithm (left) and Middlebury’s Ground

Truth (right). 45
4.7 Truncated Middlebury Stereo Evaluation Table comparing the Proposed

Method vs. State-of-the-Art. 47
4.8 GUI showing Depth Levels in Depth Map output by Proposed Method. . 50
4.9 Depth-based Blurring on (a) Tsukuba: Original Image, (b & c) Depth-

based Blurring with Single Depth Range in Focus, and (d) Depth-based
Blurring with Multiple Depth Ranges in Focus. 51

4.10 Original Image (left) and Depth-based Blurring with Single Depth Range
in Focus (right). 51

4.11 Results of Parallelization of Proposed Algorithm. 53
4.12 Left Image of Tsukuba Stereo Image Pair. 61
4.13 Ground Truth Depth Map of Tsukuba. 61
4.14 Output of LRC Method for Tsukuba (5 × 5). 61
4.15 Output of the Proposed Method for Tsukuba (5 × 5). 61
4.16 Output of LRC Method for Tsukuba (7 × 7). 62
4.17 Output of the Proposed Method for Tsukuba (7 × 7). 62
4.18 Left Image of Venus Stereo Image Pair. 62

i

4.19 Ground Truth Depth Map of Venus. 62
4.20 Output of LRC Method for Venus (5 × 5). 63
4.21 Output of the Proposed Method for Venus (5 × 5). 63
4.22 Output of LRC Method for Venus (7 × 7). 63
4.23 Output of the Proposed Method for Venus (7 × 7). 63
4.24 Left Image of Teddy Stereo Image Pair. 63
4.25 Ground Truth Depth Map of Teddy. 63
4.26 Output of LRC Method for Teddy (5 × 5). 64
4.27 Output of the Proposed Method for Teddy (5 × 5). 64
4.28 Output of LRC Method for Teddy (7 × 7). 64
4.29 Output of the Proposed Method for Teddy (7 × 7). 64
4.30 Left Image of Cones Stereo Image Pair. 64
4.31 Ground Truth Depth Map of Cones. 64
4.32 Output of LRC Method for Cones (5 × 5). 65
4.33 Output of the Proposed Method for Cones (5 × 5). 65
4.34 Output of LRC Method for Cones (7 × 7). 65
4.35 Output of the Proposed Method for Cones (7 × 7). 65
4.36 Average of ∆M for Proposed Method and LRC. 66
4.37 Average of ∆P for Proposed Method and LRC. 66
4.38 Average of ∆A for Proposed Method and LRC. 67
4.39 Execution Times for Proposed Method. 67
4.40 Execution Times for LRC Method. 68
4.41 Entropy Difference Image for Tsukuba. 68
4.42 Entropy Difference Image for Venus. 68
4.43 Entropy Difference Image for Teddy. 69
4.44 Entropy Difference Image for Cones. 69
4.45 Entropy Variations in Ent D versus Percentiles for Tsukuba (5 × 5). . . 69
4.46 Entropy Variations in Ent D versus Percentiles for Tsukuba (7 × 7). . . 69
4.47 Entropy Variations in Ent D versus Percentiles for Venus (5 × 5). . . . 69
4.48 Entropy Variations in Ent D versus Percentiles for Venus (7 × 7). . . . 69
4.49 Entropy Variations in Ent D versus Percentiles for Teddy (5 × 5). . . . 70
4.50 Entropy Variations in Ent D versus Percentiles for Teddy (7 × 7). . . . 70
4.51 Entropy Variations in Ent D versus Percentiles for Cones (5 × 5). . . . 70
4.52 Entropy Variations in Ent D versus Percentiles for Cones (7 × 7). . . . 70
4.53 Teddy Depth Map for 20th Percentile. 71
4.54 Teddy Depth Map for 30th Percentile. 71
4.55 Teddy Depth Map for 40th Percentile. 72

ii

4.56 Teddy Depth Map for 50th Percentile. 72
4.57 Teddy Depth Map for 60th Percentile. 72
4.58 Teddy Depth Map for 70th Percentile. 72
4.59 Teddy Depth Map for 80th Percentile. 72
4.60 Left Image of Stereo Pair captured using 3D Camcorder. 73
4.61 Depth Map of Left Image obtained using Proposed Method. 73
4.62 Kinect Depth Map (left) and Kinect RGB Image (right). 74
4.63 Left Image of Stereo Pair. 74
4.64 Left Image Ground Truth. 74
4.65 Proposed 3D Method’s output Depth Map. 74
4.66 Authors’ 2D Method’s output Depth Map. 74
4.67 Mapping Depth Map Grey Levels & Color Codings to Actual Distances. 74

iii

List of Tables

2.1 Comparison of Basic Depth Estimation Approaches 14
2.2 Comparison of Recent Depth Estimation Methods 19

4.1 Middlebury Stereo Image Pairs used for Performance Evaluations . . . 39
4.2 Parameter Values for the Three Image Pairs 42
4.3 Performance Comparison of Proposed Algorithm 44
4.4 Performance Comparison of Proposed Algorithm with Graph-cut Method 45
4.5 Performance Comparison of Proposed Algorithm with TV-based Method 45
4.6 Comparison of Proposed Algorithm with State-of-the-Art Methods w.r.t

Computation Time . 49
4.7 Results of Parallelization of Proposed Algorithm 52
4.8 Speed-ups Achieved by Parallelization of Proposed Algorithm 53

iv

Abbreviations

2D Two Dimensional
3D Three Dimensional
3D − TOF Three Dimensional Time of Flight
3DTV Three Dimensional Television
AD Absolute Difference
AI Task Tracker
APARAPI A Parallel Application Programming Interface
API Application Programming Interface
CGI Computer Generated Imagery
CID Computed Image Depth
CIE Commission Internationale de l’Eclairage
CMOS Complementary Metal Oxide Semiconductor
CPU Central Processing Unit
CRT Cathode Ray Tube
CUDA Compute Unified Device Architecture
DIBR Depth Image Based Rendering
DOF Depth of Field
DP Dynamic Programming
DTW Dynamic Time Warp
GPGPU General Purpose computing on Graphics Processing Units
GPU Graphics Processing Units
GUI Grapical User Interface
JTP Java Thread Pool
LIDAR Light Detection and Ranging
LCD Liquid Crystal Display
LRC Left Right Consistency
MPI Message Passing Interface
NCC Normalized Cross Correlation
OpenCL Open Computing Language
OpenCV Open Source Computer Vision
OpenMP Open Multi-Processing
PC Personal Computer

v

POSIX Portable Operating System Interface
RGB Red Green Blue
RGB −D Red Green Blue Depth
SAD Sum of Absolute Differences
SD Squared Difference
SfM Structure from Motion
SLR Single Lens Reflex
SO Scanline Optimization
SSD Sum of Squared Differences
TrueHD True High Definition
WTA Winner Takes it All

vi

1 INTRODUCTION

It is well known that we move around in our physical environment which is three-
dimensional (3D). Humans are able to perceive the spatial relationship between objects
just by looking at them because we have 3D perception, also known as depth percep-
tion. As we look around, the retina in each eye forms a two-dimensional (2D) image of
our surroundings and our brain processes these two images into a 3D visual experience.
However, it is important to note that having vision in both eyes (stereoscopic or binoc-
ular vision) is not the only way to see in 3D. People who can only see with one eye
(monocular vision) can still perceive the world in 3D, and may even be unaware that
they are stereo blind. They are simply missing one of the tools to see in 3D, so they rely
on the remaining ones. Below are some of the tools humans use for depth perception.

1.1 Human Depth Perception

Human depth perception is described by the following features:

1. Stereoscopic Vision: Two eyes provide slightly separate images; closer objects
appear more separated than distant ones.

2. Accommodation: As we focus on a close or distant object, the lenses in our eyes
physically change shape, providing a clue as to how far away the object is.

3. Parallax: As our head moves from side to side, closer objects appear to move
more than distant ones.

4. Size Familiarity: If we know the approximate size of an object, we can tell ap-
proximately, how far away it is based on how big it looks. Similarly, if we know
that two objects are a similar size to each other but one appears larger than the
other, we will assume the larger object is closer.

5. Aerial Perspective: As light is scattered randomly by air, distant objects appear
to have less contrast than nearby objects. Distant objects also appear less color-
saturated and have a slight color tinge similar to the background (usually blue).

In order to represent the 3D world on a flat (2D) surface such as a display screen, it
is desirable to simulate as many of these perception tools as possible. Although there is

1

currently, no way to simulate all of them at the same time, video does use a combination.
For example, aerial perspective and size familiarity are automatically captured by the
video camera. In CGI scenes, aerial perspective must be added so that distant objects
appear less clearly, (this is called distance fog). Of course, the addition of stereoscopic
images (a separate image for each eye) is a significant improvement, so much so, that
most people think of stereoscopic films as being 3D, and all others as being 2D.

1.2 Videos from 2D Camcorders

A 2D video, more commonly referred to as simply a video, is a sequence of moving
images having a contextual and temporal relationship with each other. A traditional 2D
video image has width and height but technically, it has no depth, i.e. everything in the
image is presented at the same distance from the viewer. Still, the viewer does perceive
the image as 3D by subconsciously using the techniques listed above–much the same
as how stereo-blind people perceive the real world.

1.3 Videos from 3D Camcorders

3D video adds stereoscopic vision, meaning that two separate images are shown simul-
taneously, one to each eye. This presents enormous technical problems, which is why
there is still no perfect system almost 100 years since the first 3D movie was made.
Common display methods include the following:

1. Anaglyphic processing (red / cyan glasses): The original 3D system, now largely
out of favor.

2. Polarized light system (polarized filter glasses): The most common new system
for cinemas.

3. Active shutter system (LCD shutter glasses): The most likely standard for the first
generation of 3D televisions and other displays.

1.3.1 Anaglyphic Processing

Anaglyph 3D is the name given to the stereoscopic 3D effect achieved by means of
encoding each eye’s image using filters of different (usually chromatically opposite)
colors, typically red and cyan. Anaglyph 3D images contain two differently filtered
colored images, one for each eye. When viewed through the color-coded anaglyph
glasses, each of the two images reaches one eye, revealing an integrated stereoscopic
image. The visual cortex of the brain fuses this into perception of a 3D scene.

2

1.3.2 Polarized Light System

A polarized 3D system uses polarization glasses to create the illusion of 3D images by
restricting the light that reaches each eye, an example of stereoscopy. To present stereo-
scopic images and films, two images are projected superimposed onto the same screen
or display through different polarizing filters. The viewer wears low-cost eyeglasses
which contain a pair of different polarizing filters. As each filter passes only that light
which is similarly polarized and blocks the light polarized in the opposite direction,
each eye sees a different image. This is used to produce a 3D effect by projecting the
same scene into both eyes, but depicted from slightly different perspectives. Several
people can view the stereoscopic images at the same time.

1.3.3 Active Shutter System

An active shutter 3D system (a.k.a. alternate frame sequencing, alternate image, AI,
alternating field, field sequential or eclipse method) is a technique of displaying stereo-
scopic 3D images. It works by openly presenting the image intended for the left eye
while blocking the right eye’s view, then presenting the right-eye image while blocking
the left eye, and repeating this so rapidly that the interruptions do not interfere with the
perceived fusion of the two images into a single 3D image.

An active shutter 3D system generally uses liquid crystal shutter glasses (also called
active shutter glasses). Each eye’s glass contains a liquid crystal layer which has the
property of becoming dark when voltage is applied, being otherwise transparent. The
glasses are controlled by a timing signal that allows the glasses to alternately darken
over one eye, and then the other, in synchronization with the refresh rate of the screen.
The timing synchronization to the video equipment may be achieved via a wired signal,
or wirelessly by either an infrared, radio frequency, Bluetooth or optical transmitter.

Active shutter 3D systems are used to present 3D films in some theaters. It can be
used to present 3D images on CRT, plasma, LCD and other types of video displays.

1.4 Microsoft Kinect Depth Camera

A depth camera is a device that can capture the depth information of a scene using spe-
cial built-in depth sensors and infrared light. A very common example is the Microsoft
Kinect Depth Camera shown in Fig. 1.1.

Kinect is a actually a motion sensing input device by Microsoft for the Xbox 360
video game console and Windows PCs. Based around a webcam-style add-on periph-
eral for the Xbox 360 console, it enables users to control and interact with the Xbox 360
without the need to touch a game controller, through a natural user interface using ges-

3

Figure 1.1: Microsoft Kinect Depth Camera.

tures and spoken commands. The Kinect sensor is a horizontal bar connected to a small
base with a motorized pivot and is designed to be positioned lengthwise above or below
the video display. The device features an RGB camera, depth sensor and multi-array
microphone running proprietary software, which provide full-body 3D motion capture,
facial recognition and voice recognition capabilities.

Kinect’s sensor consists of an infrared laser projector combined with a monochrome
CMOS sensor, which captures video data in 3D under any ambient light conditions.
The sensing range of the depth sensor is adjustable, and the Kinect software is capable
of automatically calibrating the sensor based on game-play and the player’s physical
environment, accommodating for the presence of furniture or other obstacles.

1.5 Depth of Field (DOF)

In optics, particularly as it relates to film and photography, depth of field (DOF) is
the distance between the nearest and farthest objects in a scene that appear acceptably
sharp in an image. Although a lens can precisely focus at only one distance at a time,
the decrease in sharpness is gradual on each side of the focused distance, so that within
the DOF, the un-sharpness is imperceptible under normal viewing conditions. In some
cases, it may be desirable to have the entire image sharp, and a large DOF is appropriate.
In other cases, a small DOF may be more effective, emphasizing the subject while de-
emphasizing the foreground and background. In cinematography, a large DOF is often
called deep focus, and a small DOF is often called shallow focus.

1.5.1 Digital Techniques Affecting DOF

The advent of digital technology in photography has provided additional means of con-
trolling the extent of image sharpness; some methods allow extended DOF that would
be impossible with traditional techniques, and some allow the DOF to be determined

4

after the image is made. Some of them are explained below in brief.

1. Focus Stacking is a digital image processing technique which combines multiple
images taken at different focus distances to give a resulting image with a greater
depth of field than any of the individual source images. Available programs for
multi-shot DOF enhancement include Adobe Photoshop, Syncroscopy AutoMon-
tage, PhotoAcute Studio, Helicon Focus and CombineZ. Getting sufficient depth
of field can be particularly challenging in macro photography.

2. Wavefront Coding is a method that convolves rays in such a way that it provides
an image where fields are in focus simultaneously with all planes out of focus by
a constant amount.

3. Colour Apodisation is a technique combining a modified lens design with image
processing to achieve an increased depth of field. The lens is modified such that
each colour channel has a different lens aperture. For example the red channel
may be f/2.4, green may be f/2.4, whilst the blue channel may be f/5.6. Therefore
the blue channel will have a greater depth of field than the other colours. The
image processing identifies blurred regions in the red and green channels and in
these regions copies the sharper edge data from the blue channel. The result is an
image that combines the best features from the different f-numbers.

Another set of algorithms exist which deal with simulating synthetic depth-of-field
effects (like shallow focus) in scenes captured using conventional digital cameras. Such
algorithms are important for drawing human attention to regions of interest.

1.6 Depth Maps

A depth map is an image or image channel containing information relating to the dis-
tance of the surfaces of scene objects from a viewpoint. Depth maps have a number of
uses, including the following:

1. Simulating the effect of uniformly dense semi-transparent media within a scene,
such as fog, smoke or large volumes of water.

2. Simulating shallow Depth of fields, where some parts of a scene appear to be out
of focus. Depth maps can be used to selectively blur an image to varying degrees.
A shallow depth of field can be a characteristic of Macro photography and so the
technique may form a part of the process of Miniature faking.

5

3. Z-buffering and z-culling, techniques which can be used to make the rendering
of 3D scenes more efficient. They can be used to identify objects hidden from
view and which may therefore be ignored for some rendering purposes. This is
particularly important in real time applications such as computer games, where a
fast succession of completed renders must be available in time to be displayed at
a regular and fixed rate.

4. Shadow mapping, which is part of one process used to create shadows cast by
illumination in 3D computer graphics. In this use, the depth maps are calculated
from the perspective of the lights, not the viewer.

5. To provide the distance information needed to create and generate Autostere-
ograms and in other related applications intended to create the illusion of 3D
viewing through stereoscopy.

6. Subsurface scattering, which can be used as part of a process for adding real-
ism by simulating the semi-transparent properties of translucent materials such
as human skin.

1.7 Depth Estimation

Depth estimation or extraction refers to the set of techniques and algorithms aiming to
obtain a representation of the spatial structure of a scene. In other terms, to obtain a
measure of the distance of, ideally, each point of the scene. This can be done in several
ways, including the following:

1. Shooting the scene using special Depth Cameras also known as Ranging Cameras
or RGB-D Cameras which capture the depth of the scene in addition to the RGB
values of each and every pixel.

2. Depth estimation from visual cues present in the captured scene such as variation
of contrast, focus etc. with varying distance from the camera.

3. Depth estimation from using stereo vision techniques like comparing the left and
right image of a stereo image pair and correlating them (calculation of stereo dis-
parity). This is the area which will be focused on (primarily) in this thesis, which
deals with design of a novel algorithm for depth extraction from stereo image
pairs, and further, using the extracted depth information to perform (selective)
de-focusing of users’ non-interest image regions.

6

1.8 Parallel Framework

Computer algorithms can be classified as serial and parallel. Serial algorithms present a
direct and straight-forward way to translate an algorithm into computer code. However,
for algorithms with high computational complexity, as their size of input increases, their
execution time also increases drastically. In such cases, we need to convert the serial
(or sequential) algorithm to its parallel version, by segregating its mutually independent
steps. These steps are run separately from each other, in parallel. Then, the results
of these steps are combined to produce the final output. If such parallel algorithms
are executed on suitable parallel hardware, like multi-core CPUs and GPGPUs, their
execution time decreases significantly.

Thus, a parallel algorithm or concurrent algorithm, as opposed to a traditional se-
quential (or serial) algorithm, is an algorithm which can be executed a piece at a time
on many different processing devices, and then combined together again at the end to
get the correct result. Some algorithms are easy to divide up into pieces in this way.
For example, splitting up the job of checking all of the numbers from one to a hundred
thousand to see which are primes could be done by assigning a subset of the numbers to
each available processor, and then putting the list of positive results back together. Most
of the available algorithms to compute pi (π), on the other hand, cannot be easily split
up into parallel portions. They require the results from a preceding step to effectively
carry on with the next step. Such problems are called inherently serial problems. Itera-
tive numerical methods, such as Newton’s method or the three-body problem, are also
algorithms which are inherently serial. Some problems are very difficult to parallelize,
although they are recursive. One such example is the depth-first search of graphs. Par-
allel algorithms are valuable because of substantial improvements in multiprocessing
systems and the rise of multi-core processors. The cost or complexity of serial algo-
rithms is estimated in terms of the space (memory) and time (processor cycles) that
they take. Parallel algorithms need to optimize one more resource, the communication
between different processors. There are two ways parallel processors communicate,
shared memory or message passing, and the details are as follows:

1. Shared Memory processing needs additional locking for the data, imposes the
overhead of additional processor and bus cycles, and also serializes some portion
of the algorithm.

2. Message Passing processing uses channels and message boxes but this communi-
cation adds transfer overhead on the bus, additional memory need for queues and
message boxes and latency in the messages. Designs of parallel processors use

7

special buses like crossbar so that the communication overhead will be small but
it is the parallel algorithm that decides the volume of the traffic.

Another problem with parallel algorithms is ensuring that they are suitably load bal-
anced. For example, checking all numbers from one to a hundred thousand for primality
is easy to split amongst processors; however, some processors will get more work to do
than the others, which will sit idle until the loaded processors complete.

Figure 1.2: Summing of Eight Numbers in Parallel.

Fig. 1.2 shows the classic example of the parallel summation of a list of eight num-
bers. As is evident from the representation, four processors (or cores) can be allocated,
each to sum two numbers in parallel in the first stage, two processors, each to sum two
of the previous two sums in parallel in the second stage, and finally, one processor to
calculate the final sum. Assuming that each summing operation takes one unit of time,
the total time taken in the parallel approach is 3 units, whereas, that in the serial ap-
proach is 7. This ratio 7 / 3 is called the speed-up factor and it used to quantitatively
describe the increase in speed due to parallelization.

For executing a parallel algorithm, in addition to parallel processing hardware, we
need the appropriate software framework as well. The following sections list some
existing parallel frameworks with short descriptions of each.

1.8.1 OpenMP

OpenMP (Open Multi-Processing) is an API that supports multi-platform shared mem-
ory multiprocessing programming on most processor architectures and operating sys-
tems. It consists of a set of compiler directives, library routines, and environment
variables that influence run-time behavior. OpenMP is managed by OpenMP Archi-
tecture Review Board (or OpenMP ARB), jointly defined by a group of major computer

8

hardware and software vendors. OpenMP uses a portable, scalable model that gives
programmers a simple and flexible interface for developing parallel applications for
platforms ranging from the standard desktop computer to the supercomputer. An ap-
plication built with the hybrid model of parallel programming can run on a computer
cluster using both OpenMP and Message Passing Interface (MPI), or more transparently
through the use of OpenMP extensions for non-shared memory systems.

1.8.2 MPI

Message Passing Interface (MPI) is a standardized and portable message-passing sys-
tem designed by a group of researchers from academia and industry to function on a
wide variety of parallel computers. The standard defines the syntax and semantics of a
core of library routines useful to a wide range of users writing portable message-passing
programs in Fortran 77 or the C programming language. There are several well-tested
and efficient implementations of MPI, including some that are free or in the public
domain. These fostered the development of a parallel software industry, and there en-
couraged development of portable and scalable large-scale parallel applications.

1.8.3 Pthreads

POSIX Threads, usually referred to as Pthreads, is a POSIX standard for threads. The
standard, POSIX.1c, Threads extensions (IEEE Std 1003.1c-1995), defines an API for
creating and manipulating threads. Implementations of the API are available on many
Unix-like POSIX-conformant operating systems, as well as Windows.

1.8.4 GPGPU

General-purpose computing on graphics processing units (General-purpose graphics
processing unit, GPGPU) is the utilization of a graphics processing unit (GPU), which
typically handles computation only for computer graphics, to perform computation in
applications traditionally handled by the central processing unit (CPU). Additionally,
the use of multiple graphics cards in one computer, or large numbers of graphics chips,
further parallelizes the already parallel nature of graphics processing. OpenCL is the
currently dominant open general-purpose GPU computing language. The dominant
proprietary framework is Nvidia’s CUDA.

9

2 LITERATURE SURVEY

A survey of existing literature was carried out to understand the work done by several
researchers in the area of depth-based blurring of 3D videos and their parallel imple-
mentation using GPGPU. Though attempts at depth blurring of 2D images for drawing
human attention to regions of interest have been made, yet it seems like attempts at par-
allelizing those processes, specially by using GPGPUs are rare. Further, the course of
research taken over the last few decades related to depth map extraction methods have
been investigated. An attempt has also been made to understand the various methods
employed by several researchers to identify and eliminate incorrect depth estimates.

2.1 Related Work

2.1.1 Depth-based Selective Blurring

In [1], authors showed that algorithms for generating synthetic depth-of-field effects
have been used to draw human attention to regions of interest [2], to reduce the bit-rate
of regions of non-interest [3] and for providing realistic rendering in animated films
and computer graphics. It is evident that the focus of this thesis include application of
synthetic depth-of-field effects similar to [2].

In [4], the authors tried to overcome the limitations of present day cameras that
have DOFs corresponding to a single slab that is perpendicular to the optical axis. In
their work, they presented an imaging system that enables one to control the DOF in
new and powerful ways. Their approach is to vary the position and/or orientation of
the image detector during the integration time of a single photograph. In essence, their
work represents the hardware implementation of achieving flexible depth of field effects
by using a prototype camera using a micro-actuator to translate the detector along the
optical axis during image integration.

In [1], the authors proposed a novel algorithm for enhancing an image or video
frame with artificial depth of field effects. The authors claimed that this is similar to the
blurring effects produced by real cameras when objects outside the depth of field set on
the camera by the photographer are blurred from the sight of the viewer of the photo-
graph. The proposed algorithm is a post-filtering approach which scores over similar
earlier methods in that it does not suffer from intensity leakage from sharp boundaries.
Intensity leakage occurs in gather [2] methods of approximating depth blurring. Gather
methods take the local average of pixel values around the desired location, so intensity

10

from sharp source pixels is spread over surrounding background. The algorithm pro-
cesses the input image based on the information encoded in the depth map, an in-focus
depth (the depth of a chosen object of interest or of the nearest-to-camera object), and
an overall blur level, i.e. the desired level of the depth of field effect, and the details are
illustrated in the Fig. 2.1.

Figure 2.1: Block Diagram of Depth-based Selective Blurring.

The authors computed the blur map from the depth map so that the chosen depth
has zero blur level and the other depths have gradually increasing blur away from this
depth. However, it must to be borne in mind that a single depth of interest will not be of
much use to us, as more focus is given in this thesis to the more general case of multiple

depths. It is similar to [4], where the authors attempted to improve traditional cameras
which restrict the photographer to only one range of depths, instead of many.

In [5], authors presented a novel selective blurring algorithm that mimics the optical
distance blur effects that occur naturally in cameras and eyes. The proposed algorithm
provides a realistic simulation of distance blurring, with the desirable properties of aim-
ing to mimic occlusion effects occurring in natural blurring, and can handle any number
of blurring and occlusion levels with the same order of computational complexity.

2.1.2 Depth Estimation and Depth Maps

As stated earlier, the depth of an image can be estimated from various visual cues
present in the image itself like variation in focus, contrast etc. at different regions
of the image. Depth map of the image can also be directly obtained by using special
depth cameras which capture depth of each pixel in addition to their RGB values. Lit-
erature survey shows attempts at depth estimation using various such techniques which
are discussed in this section.

Depth Estimation From 2D Videos

With the development of 3DTV, the conversion of existing 2D videos to 3D videos
has become an important component of 3D content production. In general, the conver-
sion process consists of depth map generation, which estimates the 3D geometry of the

11

scene, and rendering, which produces output stereo images. Thus, the first key step in
2D to 3D conversion is how to generate a dense depth map from a 2D video, which,
technically contains no depth information.

In [6], the authors proposed a novel depth extraction method based on motion and
geometric information for 2D to 3D conversion, which consists of two major depth ex-
traction modules, the depth from motion and depth from geometrical perspective. The
H.264 motion estimation result is utilized and cooperates with moving object detection
to diminish block effect and generates a motion-based depth map. On the other hand,
a geometry-based depth map is generated by edge detection and Hough transform. Fi-
nally, the motion-based depth map and the geometry-based depth map are integrated
into one depth map by a depth fusion algorithm.

The quality of depth maps is crucial for 2D to 3D conversion, but high quality depth
map generation methods are usually very time consuming. To overcome this challenge,
in [7], the authors proposed an efficient semi-automatic depth map generation scheme
based on limited user inputs and depth propagation. First, the original image is over-
segmented. Then, the depth values of selected pixels and the approximate locations
of T-junctions are specified by user inputs. The final depth map is obtained by depth
propagation combining user inputs, color and edge information. The experimental re-
sults demonstrated that their scheme was satisfactory in terms of both accuracy and
efficiency, and thus can be applied for high quality 2D to 3D video conversion. How-
ever, it must be borne in mind that this thesis is not aiming for any user intervention in
the depth map extraction process of the proposed system.

In [8], the authors proposed a hybrid algorithm for 2D-to-3D conversion in 3D dis-
plays; it is a good way to solve the problem of traditional 2D video contents which
need to generate 3D effects in 3D displays. They chose three depth cues for depth esti-
mation: motion information, linear perspective, and texture characteristics. Moreover,
they adopted a bilateral filter for depth map smoothing and noise removal. From the
experimental results, execution time can be reduced by 25%-35% and the depth per-
ception score is between 75 and 85. Thus, the human eye cannot sense the noticeable
differences from the final 3D rendering. Furthermore, it is very suitable to apply their
proposed hybrid algorithm to 2D-to-3D conversion in 3D displays.

In [9], the authors presented a novel method for generating the depth map of 2D im-
age sequences from motion information. Different from the typical multi-view stereo
method, this approach calculates the motion information directly from two sequential
images which are captured by only a single moving camera. Classical constrained op-
tical flow is known to be inaccurate for texture-less regions and complicated areas. The
proposed approach uses mean shift segmentation algorithm and optical flow together to

12

compute the depth map. The motion-based depth map and the segmented map are inte-
grated into one depth map using breadth-first search methods. Authors achieved results
with better accuracy compared to the optical flow method.

Depth Estimation From 3D Videos

This thesis mainly focuses on depth estimation from 3D videos, particularly, based on
stereo matching between left and right image frame pixels.

Stereo vision based disparity calculation is an important research problem in com-
puter vision with applications such as robotic vision, 3D scene reconstruction, object
detection and tracking etc. [10]. Here, the main challenge is to obtain an accurate depth
information of a scene by comparing the pixels of left and right images of that scene. It
is challenging because individual pixels contain only the colour and spatial information
and represent the low level image features [11]. So, to effectively compare a stereo im-
age pair, there is a need to develop a framework for identifying appropriate high level
features and thereby comparinging these features across the stereo pair efficiently with
reasonable accuracy and speed.

Disparity of a pixel varies inversely as the distance of a point in a scene (that the
pixel represents) from the 3D camera. A disparity or depth map contains the mapping of
each pixel of an image to its corresponding disparity. A cost function is used to quantify
the similarity between pixels of the left and right images of a stereo image pair. Then,
pixels disparities are estimated by relative displacement of the corresponding matching
counterparts across the image pair.

For finding the matching pixels between the stereo image pair, there as two basic
approaches: block-based and region-based; the strengths and weaknesses of these two
basic approaches are summarized in Table 2.1 [12]. The key challenge in block-based
methods is the determination of an optimal block size, and in region-based methods is
the detection of gradually changing disparities. In estimating the stereo disparities us-
ing block-based methods, small block sizes produce sharp edges on the depth map but
generates errors in the homogeneous regions since only a very limited local information
is utilized. On the other hand, large block sizes provide good performance in homoge-
neous areas but yield very inaccurate disparity measurements along objects edges. This
is because, pixels inside the same block may have varying disparities. For region-based
methods, apart from the fact that they not only create a limited number of depth levels
but also require accurate results of segmentation, which makes them inherently com-
putationally intensive and time-consuming. This provides the motivation to propose a
novel hybrid method by combining these block-based and region-based approaches and

13

thereby overcoming their individual limitations.

Table 2.1: Comparison of Basic Depth Estimation Approaches

Block-based Method Region-based Method
Approach Depth estimation based

on information contained
in pixels and their sur-
roundings.

Depth estimation based
on optimal value of cost
function for entire im-
age regions of pixels
with similar disparities.

Strength High resolution depth
maps.

Sharp edges on depth
maps.

Weakness Need to determine opti-
mal block sizes for dif-
ferent images, or even
different regions of same
image for creating accu-
rate depth maps.

Unsuitable for finding
the disparities that are
gradually changing,
as all pixels constitute
even a large region
may share a constant
disparity.

Another way to classify stereo depth estimation approaches is sparse vs. dense. In
the sparse, feature-based approaches to stereo, only a subset of image pixels (i.e. ver-
tical edge pixels) are matched, with an aim to meet real time processing requirements.
However, sparse disparity maps may often contain insufficient data points for support-
ing object segmentation which is an important prerequisite to subsequent understanding
of the scene. On the other hand, dense stereo matching can improve this bottom-up pro-
cessing chain significantly, but it is computationally complex [13].

In this context, it is also helps to quote a few very important observations about
stereo depth estimation approaches (in general) made by several authors, time and
again, including the very recent one by Tippetts et al. [14], that the number of pix-
els that each image contains increases the number of computations required to match it
with any number of possible matches, making the correspondence problem a compu-
tationally complex one that severely limits the speed at which one can obtain results.
Most of the time, accuracy and speed are pitted against each other, making it more diffi-
cult to obtain both at the same time. In any given instance of the stereo vision problem,
various questions arise; is one of these two attributes more desirable? How can the
trade-off between the two be minimized? What options already exist, and how do they
compare to each other?

The authors opined that target applications should drive the algorithm designers
decision of striking a balance between speed and accuracy. They also observed that
authors should not solely rely on advances in hardware technology to bring about radical

14

increments in processing speeds of stereo vision algorithms. Rather, they must actively
engage in improving algorithms to run faster.

When categorizing stereo vision algorithms, one of the most obvious divisions in
current literature is that of global versus local methods [14]. Local algorithms are
statistical methods usually based on correlation. Global algorithms are based on ex-
plicit smoothness assumptions that are solved through various optimization techniques.
Computational complexity of majority global algorithms makes them impractical for
real-time systems. For global methods, smoothness assumptions are defined through an
energy function and the optimization techniques minimize this function. For local meth-
ods, the correlation process finds matching pixels in left and right images of a stereo
pair by aggregating costs [e.g. sum of absolute differences (SAD), sum of squared
differences (SSD), normalized cross correlation (NCC)] within a region or block.

For several years, the most accurate disparity maps were produced by global algo-
rithms [14]. Currently, eight of the ten most accurate stereo vision algorithms ranked by
Middlebury evaluation criterion are global energy minimization algorithms. Recently,
however, many local algorithms have been developed that are competitive with respect
to accuracy. As mentioned, there is always a trade-off between accuracy and speed for
stereo vision algorithms and these accurate local algorithms are no exception.

This has provided the motivation to design the proposed local algorithm which can
strike a good balance between accuracy of results and speed of computation.

Most existing stereo disparity algorithms use one of the two types of measures of
pixel similarity between left and right image: pixel-to-pixel or window-based. Pixel-to-
pixel algorithms find the pixel similarity measure solely on individual pixel values, e.g.
Absolute Difference (AD) or Squared Difference (SD). On the other hand, window-
based methods aggregate the pixel matching cost over a support region around a pixel
of interest, e.g. SAD or SSD [13]. A study on comparison of cost functions commonly
used in recent methods of stereo disparity determination [15] has come to the conclusion
that the performance of a matching cost function depends on the stereo method that uses
it. The SAD similarity measure can be computed efficiently by exploiting the fact that
neighbouring windows overlap. For neighbouring windows with the same disparity, the
overlapping pixels will contain equal absolute difference (AD) values. Therefore, a new
SAD can be computed out of an old one by subtracting the values, which are only parts
of the old window, and adding the values, that are only parts of the new window [13].

This advantage of the SAD method, coupled with the fact that it yields better esti-
mates than AD due to its support region, has provided the motivation to use it in the
proposed method. The shape of the SAD window is often rectangular. Fewer mis-
matches will occur with large windows, especially on texture-less regions. However, it

15

is well known that large windows lead to erroneous disparity estimates at the edges of
objects [13]. To overcome these limitations, several cost aggregation strategies based on
characteristics of matching windows have been proposed in recent years. These can be
classified into cost aggregation based on rectangular windows-based and unconstrained
shapes-based strategies; lastly, by assigning different and variable weights to pixels
falling in the neighbourhood of two points on the reference and target images for which
stereo correspondence is being evaluated. Rectangular window-based methods can be
further classified into variable window-size or offset-based, multiple-windows-based,
and differential weights of window points-based approaches [16].

The multiple window approach leads to better estimates in non-occluded areas of
the input stereo image. However, it is far more expensive compared to single window
approach. Further, multiple window approach increases the computation time by more
than 50% but with slight improvement in overall accuracy [13]. So, this thesis considers
single window approach in proposed depth estimation algorithm.

Moreover, in the proposed approach, SAD is used to determine disparities of only
points which lie on segment boundaries, which often coincides with edges of objects,
where there is bound to be some amount of variation in intensity. Hence, fixed-size
square windows of size 9 x 9 pixels are chosen.

To determine the best matching pixel for a given pixel, the most obvious means
involves selecting the point in the other image within a certain disparity range that has
the best similarity value, and this has been used in many stereo matching methods. This
strategy is called Winner Takes it All (WTA). However, a stereo algorithm based only
on WTA does not consider parts of stereo images that are only visible in one of the two
images, called occlusions. Moreover, image regions having little or repetitive texture
yield similar matching costs. In these areas, WTA is error-prone as there isnt a clear
optimum correspondence [13].

It may be noted that the proposed stereo depth estimation approach will not focus
on addressing occlusion handling as of now. However, the proposed stereo depth es-
timation error detection method will be generic in nature, and will try to address all

types of estimation errors, including those arising out of occlusions.
The smoothness constraint for stereo states that disparity does not change much

on object surfaces. This concept is often used to improve disparity estimates. If a
correct disparity has been found then it can be used to constrain the range of possible
disparities of other points on the same surface [13]. This concept has been incorporated
in the fill step of the proposed depth map reconstruction phase and thereby reducing
wrong estimates on areas with little or repetitive texture.

In scan-line optimization (SO) schemes, the smoothness constraint for stereo is im-

16

plemented as a global cost function, which adds penalties to the values in the disparity
search interval of each stereo point. Errors can then be suppressed by penalizing large
jumps in disparity between scan-line points. The main drawback of SO is its sensitivity
to noise [13]. Hence, the SO scheme was not considered.

In dynamic programming (DP) approaches, the problem of finding the correct dis-
parities on a scan line is regarded as a search problem. The matching costs of all points
on a scan-line describe the disparity search space. Finding the correct disparities is akin
to finding the path in this space which takes the shortest route through the cost values.
Special rules for transversing the search space can be added to handle occlusions [13].

An important step in a stereo algorithm is searching for the disparities with the
lowest SAD values. For a particular point on the left image line, the possible matches
with points on the right image line constitute its search space. Finding the correct match
by finding the match with the lowest SAD value is computationally expensive, since the
whole disparity interval has to be searched [13]. Hence, some methods like SO and DP
try to restrict the search space for faster computation.

The edges of nearby objects do have high disparity jumps between foreground and
background. If algorithms such as SO and the DP approaches do not find these jumps,
then the wrong disparity is used to define a constraint for a part of the search space. In
the disparity images this error is visible in terms of the typical streaking error. These
misses can be induced if an object is near, or when image noise is present. Algorithms
such as SAD used for estimating disparity per point do not suffer from these types of
limitations [13].

However, irrespective of the types of algorithms, the scene geometry is known to
have a clear influence on the performance of stereo depth estimation. Specially, al-
gorithms like DP which use search space restrictions are more affected [13]. Hence,
in the proposed method, there is no imposition of any search space restrictions while
determining the disparities of pixels lying on segment boundaries using SAD.

Segmentation has been employed in many recent stereo matching algorithms which
considered segments instead of pixels, as the processing elements. But, their segmen-
tation processes mostly dealt with hierarchical approaches and also took into account
features of colour, size and shape while processing the input stereo image pairs, viz.
object-oriented segmentation methods based on bottom-up region merging [11], colour-
based Mean-shift segmentation (refer to Table 2.2) and the use of K-Means clustering
to over-segment the reference image [17]. But in all these segmentation-based stereo
depth estimation approaches there is no attempt to use, primarily segmentation results
of pixel grey level values to identify groups of pixels that could produce reliable dis-
parities when matched. An attempt has been made to explore this possibility in the

17

proposed work, thus not only making it computationally efficient (compared to time-
consuming segmentation methods like Mean-shift etc.), but also simplifying its entire
depth estimation process.

However, as only grey level values of image pixels are considered for segmenting
the reference image, and no spatial or colour information whatsoever, two steps are
included to refine the segment boundaries, using morphological filtering as well as con-
nected components analysis. Since both of these are established techniques for image
processing, their efficient implementations are readily available. Hence, the proposed
method utilizes the above mentioned techniques.

Morphological filters were used for partitioning a low depth-of-field image into fo-
cused object of interest and blurred background [18]; but, the proposed method uses
morphological filters for an entirely different task altogether, viz. refining segment
boundaries whose disparities are determined later to reconstruct the full disparity map
of the scene based on the segment boundaries depth estimates.

Connected components analysis based methods have aided image segmentation for
the purpose of text detection [19-21], brain tissue analysis [22, 23] and colour image
segmentation using genetic algorithms [24], whereas in the proposed work, connected
components analysis is used to refine the boundary map by removing small, isolated
connected components (artefacts) which may yield incorrect depth estimates. The pro-
posed approach may seem similar to [22], where the authors first roughly distinguished
the region of non-brain tissue through connected component labelling, and then tried to
refine those edges using the morphological operations, dilation and erosion. However,
a slightly closer look at the proposed method would reveal that connected components
analysis is performed after applying morphological filters and thus the ordering of these
two operations is entirely reversed.

Several depth estimation techniques [25-28] have been developed in recent years to
overcome the limitations of two basic approaches of stereo disparity estimation, viz.
block-based and region-based. Their key features are summarized in Table 2.2.

Refinement of Erroneous Depth Estimates

Stereo depth estimation algorithms based on successive refinement of initial dispar-
ity estimates have been widely used for multi-view video synthesis [29], DIBR view
synthesis [30], 2D-to-3D conversion [31] and refinement of raw depth information ob-
tained from (low-quality) depth sensors [32, 33]. Algorithms like [29] represent an
entire class of depth refinement approaches which first classify the pixel-wise initial
depth map into two categories, reliable and unreliable, followed by depth refinement

18

Table 2.2: Comparison of Recent Depth Estimation Methods

Work Advantages Limitations
Choi [25] Bi-directional consis-

tency check of disparity
blocks can improve
disparity estimates.

Comparison with simi-
lar algorithms using a
standard dataset has not
been done.

Zhu and Yu
[26]

Self-adaptive block
matching can in-
crease the efficiency of
searching, and reduce
errors in matching and
block-shape.

Presence of noise in the
original left or right im-
ages can result in selec-
tion of incorrect size for
block-matching (8 × 8
or 16 × 16).

Wang and
Zheng [27]

Cooperative optimiza-
tion can check or fix
disparity errors.

Uses the time-
consuming mean-shift
algorithm for segmenta-
tion.

Lu and Du
[28]

Harris corner point
extraction and feature-
matching yields better
corresponding points
than traditional meth-
ods.

Both left and right im-
ages are scanned for
corner extraction and
matching in the ini-
tial steps, making them
time-consuming.

for pixels with unreliable depth values. As part of this classification, the authors use the
(state-of-the-art) left-right consistency check (LRC) method. In the proposed work, a
novel classification technique is developed for such initial disparity estimates, and com-
pare it with LRC. For these (comparison) experiments, a simple, generic, block-based
stereo matching method is used to obtain the (said) initial disparity estimates, as this
represents a typical approach taken by many depth map refinement based stereo depth
estimation approaches, and the details are provided in the next section.

Further, depth map refinement techniques can be classified as pre-filtering and reli-
ability based approaches. The former approach performs pre-processing using adaptive
filters, asymmetric Gaussian filters, etc. to smooth the depth map. The latter approach
uses reliable warping information from multiple to fill holes in depth maps [30].

Another large class of depth map refinement algorithms are based on two primary
objectives: elimination of unnecessary textures and preservation of object boundaries
on the depth map [31]. This is carried out in such a manner that transitions of depth
values within any object are smoothened and the object boundaries on depth map are
aligned to those of input image. To achieve the first objective, traditionally, the Com-

puted Image Depth (CID) method was used. This method produces a rough depth map

19

from local image characteristics (statistics) such as contrast and sharpness. However it
was unable to meet the second objective since it ends up with blurring object bound-
aries, resulting in reduced (human) depth perception. Hence, it was later superseded by
bilateral filter based approaches, which keep the said object boundaries intact.

Similar trends can be seen in the case of recent depth refinement algorithms dealing
with raw depth maps obtained from (low-quality) sensors like Microsoft Kinect [32].
These methods try filling in the missing (holes) or poor (pseudo-holes) disparity esti-
mates in the initial depth map (hole-filling), as well as correcting the misalignment of
object boundaries and edges between input image and the depth map. Authors in [33],
considered multi-resolution based approaches with probabilistic Bayesian models using
joint guided filtering and belief propagation to de-noise the depth map while filling the
regions with missing disparities.

In recent years, entropy has been used to define novel aesthetic measures for 3D
stereoscopic imaging [34], particularly to characterize the quality of any given stereo
camera setting. But the use of entropy for quantification of reliability, followed by clas-
sification of initial disparity estimates as correct or incorrect, is a relatively unexplored
area, and hence has been taken up in the proposed work.

2.1.3 Depth Estimation Using Kinect Depth Camera

In [35], authors analyzed Kinect as a 3D measuring device, experimentally investigate
depth measurement resolution and error properties and make a quantitative comparison
of Kinect accuracy with stereo reconstruction from SLR cameras and a 3D-TOF camera.
They proposed Kinect geometrical model and its calibration procedure providing an
accurate calibration of Kinect 3D measurement and Kinect cameras. They demonstrated
the functionality of Kinect calibration by integrating it into an SfM pipeline where 3D
measurements from a moving Kinect are transformed into a common coordinate system
by computing relative poses from matches in color camera.

In [36], authors presented an analysis and experimental study of the Kinect’s depth
sensor with reference to resolution, quantization error and random distribution of depth
data. The effects of color and reflectance characteristics of the object are also analyzed.
The study examined two versions of Kinect sensors, one dedicated to operate with the
Xbox 360 video game console and the more recent Microsoft Kinect for Windows.

While most of the work around the Kinect is on how to take full advantage of its
capabilities, not many studies have been carried out on the limitations of this device
and how to overcome them by enhancing the precision of its measurements. In [37], the
authors reviewed and analyzed current work in this area, and presented and evaluated
a temporal de-noising algorithm to reduce the instability of the depth measurements

20

provided by the Kinect over different distances.
In [38], authors presented a comprehensive review of recent Kinect-based computer

vision algorithms and applications classified according to the type of vision problems
that can be addressed or enhanced by means of the Kinect sensor including preprocess-
ing, object tracking and recognition, human activity analysis, hand gesture analysis,
and indoor 3-D mapping. For method category, they outlined main algorithmic contri-
butions and summarized their pros/cons compared to their RGB counterparts. Finally,
they listed challenges and future research trends.

2.1.4 Parallelizing the Depth Map Extraction Process

As described earlier, attempts at depth map extraction from stereo image pairs using
GPU acceleration are rare. One such effort was made in [39], where the authors pro-
posed a stereo vision system on GPU based on a hardware-aware algorithm design ap-
proach. The system consisted of new algorithms and code optimization techniques em-
phasizing on keeping the highly data parallel structure in the algorithm design process
such that the algorithms can be effectively mapped to massively data parallel platforms.
Research has shown that, in the context of parallel extraction of depth maps from stereo
image pairs, there exists a trade-off between speed and accuracy. So, in the stated work,
authors tried to jointly optimize accuracy speed trade-off by designing high accuracy
stereo algorithms that can be effectively mapped to such platform.

On the other hand, several attempts have been made to efficiently extract depth
maps from stereo image pairs without using multiple processors cores or GPUs. One
such attempt [40] used Dynamic Time Warp (DTW) algorithm to solve the problem
of depth map extraction using the dynamic programming approach which is highly
efficient in terms of time complexity. The DTW algorithm efficiently solves the problem
of stereo matching to match the right and left raster profiles to the accuracy of one pixel
distance. To improve the resolution of distance, the authors proposed a method of sub-
pixel disparity estimation, and implemented it to generate a dense disparity map which
can resolve one tenth of a pixel distance.

The application of parallel computing architectures to video processing in general
have been focused in [41]. Authors demonstrated different optimization strategies in
detail using the 3D convolution problem as an example, and further showed, how they
affect performance on both many-core CPUs and symmetric multiprocessor CPUs. Ap-
plying these strategies to case studies from three video processing domains, they tried
to bring out some trends. The highly uniform, abundant parallelism in many video
processing kernels means that they are well suited to a simple, massively parallel task-
based model such as CUDA. As a result, ten times or greater performances increases

21

are often seen while running on many-core hardware. Some kernels, however, push the
limits of CUDA, because their memory accesses cannot be shaped into regular, vector-
izable patterns or because they cannot be efficiently decomposed into small independent
tasks. Such kernels may achieve a modest speedup, but they are probably better suited
to a more flexible parallel programming model. However, nowadays a wider array of
options is available when going for parallelization, such as general purpose computing
on multi-core GPUs (GPGPUs).

2.2 Outcome of Literature Survey

Based on the survey of existing literature, the following issues and challenges are iden-
tified for further research:

1. Depth data provided by the Kinect sensor presents several noise-related problems
like distance-dependent depth maps, spatial noise, and temporal random fluctua-
tions.

2. Most depth-estimation approaches require a trade-off between speed and accu-
racy, since depth estimation involves a lot of computational complexity.

3. Attempts at parallelizing the depth estimation process from stereo image pairs,
especially using a combination of multi-core processor architectures and GPG-
PUs are rare.

4. Researchers have tried to overcome the single-DOF limitation of traditional cam-
eras using hardware implementations that allow multiple (flexible) DOFs [4], but
no such effort has been seemingly made using only software for 3D videos.

2.3 Problem Statement

To design and develop a system for selective blurring of 3D video scenes using a novel
stereo depth estimation algorithm and further reducing its computational complexity
using a CPU-GPU accelerated framework.

2.4 Research Objectives

1. To design a novel accelerated depth map extractor for 3D images to run on CPU
and GPU.

2. To develop a system for selective blurring of scenes (frames) from 3D videos to
simulate the effect of flexible depth-of-field based on supplied depth maps.

22

3. To compare three different techniques for depth estimation: firstly, using depth
cameras, secondly, using certain visual cues from an image captured using a nor-
mal 2D camera, and lastly, from stereo image pairs using a 3D camera using
stereo correspondence techniques.

4. To develop a novel method of quantifying the reliability of depth estimates in
depth maps.

23

3 PROPOSED METHODOLOGY

3.1 Depth-based Selective Blurring using both CPU and GPU

3.1.1 Algorithm Design Perspective

It is observed from the literature that, several methods have been proposed to address the
stereo matching problem, but the trade-off between speed and accuracy is still an open
research area. Hence, throughout algorithm design process, an attempt has been made
to give due consideration to both these factors mentioned, viz. accuracy and speed. As
an example, an attempt has been made to combine the speed of the sparse, feature-based
approaches to stereo with the accuracy of the dense stereo vision methods.

This thesis proposes a novel hybrid method of disparity estimation by segmenting
pixels’ lightness values by a fast histogram-based K-Means implementation and sub-
sequent refinement of segment boundaries using morphological filters and connected
components analysis. We have already provided several motivations behind the design
choices in the proposed method in the Related Work section.

The core idea behind the proposed method is to use a scalable, block-based ap-
proach to estimate the disparities of only pixels lying on the refined segment boundaries,
and get reliable disparity estimates in less number of computations. So, the proposed
method is scalable to high resolution stereo image pairs. Then, the proposed disparity
map reconstruction method is used for estimating the disparities of pixels lying inside
segment boundaries. Finally, an application of the proposed algorithm for depth-based
selective blurring of stereo images is considered. It uses a Gaussian kernel to blur im-
age regions corresponding to (supplied) depth range(s) of user’s non-interest. Thus,
proposed methodology for the selective blurring phase is similar to that of [30]; but
the proposed method is not at all concerned with the occlusion handling, however the
proposed scheme can handle multiple, and discrete depth ranges of users’ interest.

Further, the proposed method utilizes two-dimensional intensity based segmentation
of the left image whereas Zhen Zhang et al. [12] used a one-dimensional colour-based
segmentation process of individual rows of pixels. Similarly, the proposed method uses
only L values of pixels, making the process simple and fast; on the other hand the
method of [11] is based on object-based segmentation using colour, spatial and shape
information, which potentially add to the computational time.

Lastly, the reduction in running time of the proposed algorithm is demonstrated by
running some of its mutually independent operations in parallel on the multiple cores

24

of CPUs and GPUs. Experimentation is also performed by combining the power of the
CPU and the GPU to achieve even higher degrees of parallelism.

Following are Key Contributions of the Proposed Work:

• Key Contribution 1: This is the first work on a hybrid method for stereo depth
estimation using disparity information obtained by segmentation of only lightness
values of left image pixels, unlike other methods using colour, texture and shape
characteristics.

• Key Contribution 2: This is the first work dealing with morphological filters and
connected component analysis to get sparse, but accurate depth estimates for sub-
sequent reconstruction of dense depth maps.

• Key Contribution 3: This is the first work which proposes an accelerated frame-
work for reducing the running time of a novel algorithm for stereo depth esti-
mation, using Java Thread Pool (CPU) and APARAPI (GPU), and for further
combining them, in order to achieve even greater parallelism.

3.1.2 Proposed Stereo Depth Extraction Algorithm

The proposed algorithm obtains the depth map as per the details given in Fig. 3.1.

Figure 3.1: Flowchart of Proposed Depth Extraction Algorithm.

Next, the steps of the flowchart of the proposed algorithm are explained:

Colour Space Conversion

Human eyes are more sensitive to changes in brightness than in colour. The L compo-
nent of the Lab colour space closely matches the human perception of lightness. Hence,

25

by applying pertinent transformations discussed in [42], left and right images are con-
verted from RGB to Lab colour space and only L values of its pixels are retained.

K-means Clustering

K-means algorithm is based on a basic assumption, that is, a cluster of objects can be
modeled by the mean of the cluster members. K-means tries to find the best partitioning
of data into k clusters that minimizes the cost function, which is the distance of each
point to its closest centroid. The cost function is usually the sum of squared error (SSE)

SSE =
k∑

i=1

∑
xj∈Ci

‖xj − ci‖2 (3.1)

where Ci is the set of members in the ith cluster, and ci is the centroid of Ci. The
K-means algorithm can be described by the following steps:

1. Initialize centers C = {c1, ..., ck}.

2. For each i ∈ {1, ..., k}, let µi = center of mass of all instances closer to ci than
other centroids.

3. For each i ∈ {1, ..., k}, let ci = µi

4. Repeat Steps 2 and 3 until µ̂ converges.

In the computer science community, this iterative local search is also known as
Lloyd’s algorithm. It usually converges after a few iterations. Due to its speed, ease
of implementation, and popularity of K-means, many extensions have been proposed.
The most famous variation of K-means is k-median algorithm, which represents each
cluster by the median of its members.

K-means requires three parameters to be specified by the user: Number of clus-
ters k, distance metric, and cluster initialization strategy. These parameters should be
ideally specified by expert according to domain knowledge. However, when this knowl-
edge is not available, optimum parameter values should be estimated, or default settings
are used instead. Much research have been done on making K-means efficient and ef-
fective, by defining some heuristics for each of the above parameters.

• Number of clusters k: Many heuristics are available for estimating number of
clusters, including gap statistics, Dark Block Extraction (DBE), iK-means, X-
means, and PG-means.

26

• Distance metric: Euclidean distance is the default distance metric for K-means
clustering and results in spherical clusters in the feature space. For datasets in
which Euclidean distance have poor clustering results, statistics community sug-
gests many alternative metrics that find arbitrary cluster shapes.

• Initialization: K-means objective function (SSE) is not convex, and hence the
optimization procedure can get stuck in local optima. This makes K-means very
sensitive to the choice of initial cluster centroids. In original K-means, the initial
centroids are chosen randomly. However, various alternatives have been proposed
to reduce the sensitivity of K-means to initialization. A simple but expensive so-
lution is to run K-means multiple times with different initial seeds. In this case,
the best solution among different clusterings is chosen. Another well-known al-
gorithm for seed selection is K-means++, which selects the centroids through a
biased stochastic selection. In K-means++, the first centroid c1 is chosen at ran-
dom among data points. For the next k− 1 centers, probability of each data point
xj for being chosen as ci (ith center) is D2(xj ,C)∑n

m=1 D
2(xm,C)

, where D(x,C) denotes
the distance between a point x and the nearest centroid in C. K-means++ usually
converges faster than K-means and its SSE is comparatively smaller.

Regarding computational complexity, finding the optimal solution to the K-means
clustering problem for observations in d dimensions is:

• NP-hard in general Euclidean space d even for 2 clusters

• NP-hard for a general number of clusters k even in the plane

• If k and d (the dimension) are fixed, the problem can be exactly solved in time
O(ndk+1 log n), where n is the number of entities to be clustered

Thus, a variety of heuristic algorithms such as Lloyd’s algorithm are generally used.
The running time of Lloyd’s algorithm is given as O(nkdi), where n is number of d-
dimensional vectors, k the number of clusters and i the number of iterations needed until
convergence. On data that does have a clustering structure, the number of iterations
until convergence is often small, and results only improve slightly after the first dozen
iterations. Lloyd’s algorithm is therefore often considered to be of “linear” complexity
in practice.

Histogram-based K-Means Clustering for Segmentation

In our proposed histogram-based K-means clustering for image segmentation, L values
of left image pixels are segmented using a fast histogram-based implementation of K-

27

Means clustering algorithm. A histogram of the L values is built and used instead of
the actual pixel values for clustering. Thus, the run-time of clustering is significantly
reduced, as clustering is performed on a small, fixed number of bins comprising the
histogram, because the L values (representing the histogram bins) are bound to fall
within the range of [0, 255]. Since there exists a one-to-one correspondence between
each pixel and the bin to which it has been mapped, the cluster to which the pixel has
been assigned can be easily identified as the cluster to which its bin has been assigned.
Further details w.r.t how the proposed histogram-based K-means clustering reduces the
time complexity of the image segmentation process can be found in Section 3.2: Se-
quential Complexity of Depth Extraction Algorithm.

Segment Boundary Detection and Refinement

Segment boundary detection is achieved by comparing the cluster assignment of each
pixel with that of its 8-connected pixels (i.e. its Moore neighbourhood). If any of them
is found to differ, the pixel is marked as 1 (falling on a segment boundary), else as 0 (not
on a segment boundary). So, this step creates the boundary map after segmentation.

But this approach also falsely identifies many pixels as belonging to segment bound-
aries due to limitations imposed by clustering accuracy, as the image is segmented based
on only the pixels’ lightness (L) values and not on their colour components (a, b) or spa-
tial locations (x, y) in the image. So, two morphological filters are applied to refine the
boundary map by removing such noisy pixels, in the following order.

1. Fill: Fills isolated interior pixels such as the centre pixel in:

1 1 1
1 0 1
1 1 1

2. Remove: Removes interior pixels, i.e., sets a pixel to 0 if all its 4-connected
neighbours are 1, thus leaving only the boundary pixels on.

Further, connected components analysis is used to remove small artifacts in the
boundary map due to segmentation errors, by ordering connected components present
in the boundary map by the number of pixels constituting each connected component
to remove the smallest connected components which contribute about 4% of the total
number of boundary pixels.

28

Disparity Measurement of Boundary Pixels

It is assumed that the left and right cameras are calibrated and the left and right images
share the same image plane. So, the correspondence of each pixel can only be in the
horizontal direction. For e.g., the correspondent point of any pixel on the left image can
only appear on the same row of the right image.

SAD (Sum of Absolute Differences) [10] cost function is used to determine only
the disparities of boundary pixels, using the L values of the left and right image pixels.
It should also be noted here, that by boundary pixels, it is also (implicitly) referring to
the pixels of the left image that map to the left and right borders of the disparity map.

Disparity Map Reconstruction from Boundaries

The proposed disparity map reconstruction algorithm scans through each row of the
partially computed disparity map and computes the remaining disparities based on dis-
parities that have already been calculated. It operates in two stages:

1. Disparity Propagation (Fill Stage): In the first stage, the disparity map is scanned
row-wise, left to rightwhenever consecutive two boundary pixels with equal dis-
parity values are encountered , the intermediate pixels are fill-ed with that dis-
parity value. This reflects the assumption that the pair of points in consideration
actually belong to the same object in the original image. So, all their intermediate
pixels also belong to that same object, and hence, should have similar disparity
values. The process is explained using the pseudo-code given in Algorithm 1;
disp map is the matrix containing the disparities of boundary pixels and dispar-
ity(cell) refers to the disparity value of a boundary pixel of disp map.

2. Estimation from Known Disparities (Peek Stage): In the second stage, for all pix-
els whose disparities have not yet been determined, their disparities are estimated
by peek-ing at disparity values of their two nearest pixels for which the disparities

29

have been already determined. These two nearest pixels are searched along the
same column as the pixel in question and the details are given in Algorithm 2.

3.1.3 Depth-based Selective Blurring

The depth map output by the aforementioned final step is fed to the blur map genera-
tor, along with the depth ranges of users interest and an overall blur level. It must be
noted here that, the user is solely responsible for selecting the proper depth range(s)
which comprise region(s) of his (her) interest in the scene. This is analogous to setting
a proper DOF while shooting a scene using a SLR camera. Thus, the blur map (de-
termines which image pixels will be blurred) is fed to a depth-based blurring module.
It synthesises a new scene, where all depth ranges of users’ non-interest are blurred
using Gaussian function hg (n1, n2) and Blurring kernel h (n1, n2) as defined by (3.2)
and (3.3) respectively, where n1 and n2 are dimensions of the blurring kernel, σ2 is the
variance for building the Gaussian kernel and the overall blur level is determined by σ.

hg (n1, n2) = e
−

(
n2
1 + n2

2

)
2σ2 (3.2)

h (n1, n2) =
hg (n1, n2)∑

n1

∑
n2
hg

(3.3)

Fig. 3.2 shows the overall process of this depth-based selective blurring.

30

Figure 3.2: Proposed Depth-based Blurring Block Diagram.

3.2 Sequential Complexity of Depth Extraction Algorithm

Here, the step-by-step time complexity analysis of the proposed algorithm is presented,
and thereby identifying computationally intensive steps and the degrees of interdepen-
dency between the operations of each step. Next, the steps eligible for data paralleliza-
tion are converted to data-parallel workloads in JTP and APARAPI.

The first step involves colour space conversion, in which predefined transformations
[42] are applied to the (R, G, B) triplet of each pixel in both the left and right image
to extract the L values from them. Thus, the time complexity of this step is O(c1N1)
in which N1 represents the number of pixels of each image and c1 the number of op-
erations required to perform each transformation. Further, as transformation applied
to each pixel is independent of others, this step lends itself to the most obvious data
parallelization.

In the next step, K-Means clustering is performed on the L values obtained in the
previous step. The time-complexity derivation for the naive K-Means implementation
is first shown. Then, it is shown, how the fast implementation has been able to reduce
the complexity. Let tdist be the time to calculate the distance between any two feature
vectors on which the K-Means algorithm is run; then, each iteration of K-Means has
the complexity O(KN2tdist), where K denotes the number of cluster centres and N2 the
number of feature vectors (L values, in case of the proposed method). For finding tdist,
only one computational step is needed, that of finding the absolute difference between
two integers falling within the range [0, 255] (the range of possible values for L). More
importantly, since clustering is performed on the bins of the histogram of the left image,
and there can be a maximum of 256 bins (representing the range [0, 255]), this drasti-
cally reduces the time complexity compared to the naive implementation which would
have run each iteration on all N1 L values (one value for each of the N1 pixels of the
left image).

The next three steps, namely, segment boundary detection and refinement using
morphological filters, fill and remove, are performed in number of comparisons linear
in the number of pixels of the left image, i.e.,N1. Hence, they have time complexities of

31

O(c2N1), O(c3N1) and O(c4N1) respectively with the ci terms representing the number
of operations required for each step. It is also evident, that since the operations for each
step are independent for each pixel, they are ideal candidates for data parallelization
leading to accelerated processing.

The next step, viz. finding connected components has three basic operations:

1. Search for the next unlabelled pixel, p.

2. Use a flood-fill algorithm to label all the pixels in the connected component con-
taining p.

3. Repeat steps 1 and 2 until all the pixels are labelled.

It is clear that searching for new unlabelled pixels until all image pixels have been
labelled requires a number of operations which is linear in the total number of image
pixels. Further, a recursive flood-fill algorithm works as outlined below:

1. If the pixel to be labelled is unlabelled, then label it, else stop.

2. Reclusively flood-fill each unlabelled 8-connected pixel of the above pixel.

Since there are if clauses, flood-fill only considers unlabelled pixels, which have a
static number, say, n. Therefore worst-case complexity becomes O(n). For ordering Nc

connected components based on their constituent number of pixels, merge-sort can be
used to finish the operation in O(Nc log(Nc)) comparisons.

Next, to find the disparity of each boundary pixel using the SAD cost function for
a (constant) window size w and a (constant) maximum disparity d, O(w2d) operations
are required. Now, for Nb boundary pixels, it becomes O(Nbw

2d).
Lastly, both the fill and peek stages of the depth map reconstruction phase of the

proposed algorithm are primarily based on a (constant number of) computations on the
disparities of boundary pixels with time complexities of O(Nb) each, and these can also
be converted into data parallel workloads due to its independent nature.

Space complexity of the proposed algorithm can be computed as follows: the pix-
els’ L values and the complete depth map need O(N1) memory; an auxiliary storage
of O(Nb) size is also needed for holding the intermediate results of segment boundary
detection and refinement and the disparities of pixels lying on refined segment bound-
aries. For K-Means clustering, an array of size O(256) is required for storing the count
of image pixels mapped to each histogram bin for the present iteration (each histogram
bin represents each grey-intensity present in the image).

32

3.3 Parallel Implementation of Depth Extraction Algorithm

Parallelization of some of the computationally intensive steps of the proposed algorithm
are carried out, whose constituent operations are mutually independent. By executing
these independent steps on multiple cores of the CPU and GPU, it can reduce the time
complexity. Java Thread Pool (JTP) is used for CPU-parallelization and APARAPI (an
API which allows suitable data parallel Java code to be executed on GPU via OpenCL),
for GPU-parallelization [43]. Experimentation is also done by combining the two meth-
ods to achieve even greater performance.

The independent execution units in Java Thread Pool are the worker threads and in
APARAPI are the kernels. Thus, the parts of the developed code which are intended to
run in parallel are put in the respective execution units. Moreover, combination of CPU
and GPU parallelization leads to sharing the workload between them, so it is required
to decide on how many execution units are to be run simultaneously on the CPU and
the GPU, so as to achieve optimal balancing of workload between them.

3.4 Parallel Complexity Analysis of Depth Extraction Algorithm

Assuming the availability of p parallel processing units, for four steps of the proposed
algorithm, viz. colour space conversion and segment boundary detection and refine-
ment using the morphological filters fill and remove, each of them can be completed in
O(ciN1/p) time. Similarly, both the fill and peek steps of the depth map reconstruction
phase can also be completed in O(Nb/p) time each.

3.5 Proposed Depth Estimation Error Detection Method

3.5.1 Algorithm Design Perspective

Following are key contributions of this thesis w.r.t disparity estimation error detection:

• Key Contribution 1: This is the first work which proposes a novel entropy-based
approach for detection of errors in initial disparity estimates obtained in prelimi-
nary stages of dense stereo correspondence algorithms.

• Key Contribution 2: This thesis is the first to propose a novel confidence measure
for initial disparity estimates based on the difference between the entropy of a
point on input image and its corresponding point on the depth map.

• Key Contribution 3: This is the first work which proposes a novel quality metric to
quantify error detection capabilities of algorithms on the initial disparity estimates
obtained in dense stereo correspondence methods.

33

3.5.2 Algorithm Design Methodology

Fig. 3.3 shows the flowchart of the overall methodology for the proposed approach
w.r.t stereo disparity estimation error detection in initial disparity estimates generated
by dense stereo correspondence algorithms. The proposed method uses two entropy
filters, one for the left image of stereo image pair, and another for its (initial) depth
map, both of which are taken as inputs. The detailed steps are explained subsequently.

Figure 3.3: Proposed Depth Estimation Error Detection Method.

Inputs

The inputs to the proposed algorithm are the following:

1. Left Image (Gray-scale): The left image of the input stereo pair is converted to
gray-scale (if it is not already in gray-scale) before using the proposed algorithm.

2. Depth Map of Left Image: The (initial) depth map output by the dense stereo
matching algorithm, corresponding to the left image of the stereo pair is the 2nd

input to the proposed algorithm. This (initial) depth map has incorrect disparity
estimates for many of the image pixels, and the proposed algorithm will try to
identify them.

3. Size of Neighborhood: This is a required parameter for the Entropy Filtering
step, where Shannons entropy is calculated (separately) for each pixel of the left

34

image, and its (initial) depth map, by considering a square area around the pixel.
The said pixel always occupies the central position inside this square area; hence,
the value supplied for the size of the neighborhood must be odd.

Entropy Filter

Entropy is a statistical measure of randomness that can be used to characterize the
texture of the input image. The entropy filter computes the local entropy of a gray-
scale image. It outputs a new image, in which each output pixel contains the entropy
value of the neighborhood around the corresponding pixel in the input image. The
size of the said neighborhood is determined by the input parameter, which has been
described earlier. For pixels on the borders of the input image, symmetric padding is
used, in which all the values of padding pixels are mirror reflections of border pixels
of the input image. The entropy is calculated based on the standard Shannons entropy
measure, given in (3.4),

h = −
n∑

i=1

pi. ∗ log2 pi (3.4)

where pi contains the normalized histogram counts of the neighborhood around any
given pixel. The number of histogram bins is taken as 256 (gray-scale image).

In the proposed method, the entropy filter is applied to both the (gray-scale) left
image, and a (initial) depth map supplied by the stereo correspondence algorithm. Thus,
two entropy maps are obtained, one for the left image, denoted by Ent L, and the other
for the (initial) depth map, denoted by Ent D.

Further, scaling it performed on Ent L and Ent D by dividing each with the value of
its maximum element and multiplying by 255 (maximum allowed gray-scale intensity
value of any pixel), as this procedure of scaling produces better results.

Entropy Assumption

The core assumption underlying the proposed method is that, entropy of any point on

an image will be significantly higher than the entropy of its corresponding point on the

depth map of that image.
The above assumption is based on the observation that, gray-scale intensity can

vary significantly (as compared to the depth level) in the neighborhood of any given
pixel. This may be due to multiple reasons such as image noise, differences in lighting
(like shadows or reflections), differences in surface texture, etc. even when the said
neighboring pixels also lie on the same surface and roughly at the same depth level.

35

Based on this assumption, the proposed method subtracts the value of each pixel
of the depth maps entropy map, Ent D, from the corresponding pixel of the left im-
ages entropy map, Ent L, to generate the entropy difference image, Ent as the output.
Some of Ents pixels may have negative values (an absolute difference of entropy is not
computed). Thus, high Ent values should correspond to the correct depth estimates.

Threshold Detection

This step deals with deriving a pixel value threshold, Ent Th, from the entropy differ-
ence image, Ent. All pixels in the depth map of the left image corresponding to those
in Ent with values lesser than Ent Th will be classified as incorrect disparity estimates.
The detailed steps are as follows:

1. Percentiles Computation: The proposed method first derives all the (integral) per-
centiles (1 through 100) from the values of Ent, denoted by Pi. One of these Pi

will be designated as Ent Th, as shown below.

2. Tracing Entropy Variations in Ent D vs. Percentiles: For each percentile Pi, the
standard deviation, Ei, of depth map entropys in Ent D is calculated, such that
corresponding pixels in Ent have values less than Pi. Then, a 3rd degree polyno-
mial is fit (using Least Squares) to correlate the percentile value Pi and Ei, by
taking them as independent and dependent variables, respectively. In the subse-
quent steps, the proposed method determine the inflection point of this polyno-
mial (rationale behind all these steps is explained below) to uniquely determine
the value of Ent Th (as a 3rd degree polynomial has exactly one inflection point).
It has been observed that, regions of incorrect disparity estimates are often made
up of random, uncorrelated disparity values concentrated in small spatial regions.
So, entropies of such unstable regions of the disparity map are expected to be
high. Again, it has been seen that, regions of low entropy difference (Ent) values
correspond to the regions of incorrect disparity estimates.

Thus, combining the above two observations, the motivation behind the proposed
method was to examine, how (by gradually taking higher values of Ent or Pi as
the threshold, Ent Th) the entropy of disparity estimates corresponding to Ent
values lesser than Ent Th (or, Pi), varies (as measured by the standard deviation
of the entropy values). Further details w.r.t this explanation are provided in the
Results and Discussion section.

3. Determining the Polynomials Inflection Point: An attempt is made to determine,
whether the inflection point of the polynomial (obtained by setting its 2nd deriva-

36

tive w.r.t its independent variable to zero and solving the resulting equation) falls
in between the 20th and the 80th percentile (Pi) value. In that case, the pixel value
threshold, Ent Th is chosen as the value of the inflection point, Pp. However, in
case Pp does not lie between P20 and P80, Pp (Ent Th) is taken to be P50, so as to
disallow extreme values of the threshold Ent Th.

37

4 RESULTS AND DISCUSSION

4.1 Depth-based Selective Blurring

To compare the stereo disparity estimation performance of the proposed approach ver-
sus those of some other (existing) algorithms, initially, the proposed algorithm is exe-
cuted on on three pairs (left and right) of stereo images from the Middlebury data-set,
viz. Tsukuba, Sawtooth and Venus and compared the generated depth maps with corre-
sponding ground truth depth maps provided in the data-set. Depth maps obtained by the
proposed method are also compared with those output by two established cost functions
(SAD and NCC) used in numerous traditional stereo disparity estimation methods, and
a recent method [12] which uses the absolute difference (AD) cost function, for those
same three stereo image pairs. Error rates of the proposed algorithm are also compared
with those of two most competitive disparity estimation techniques, viz. Graph-cut [44]
and TV-based [45]. Also, the Middlebury Stereo Evaluation page maintains a table of
performance statistics of numerous state-of-the-art disparity estimation methods, sub-
mitted by authors, after running their algorithms on four standard stereo pairs supplied
as part of the data-set (viz., Tsukuba, Venus, Teddy and Cones) with constant parame-
ters . It is obvious that there is no way to check whether the authors actually ran their
algorithms with a constant set of parameter values for all the four image pairs, and algo-
rithms may yield substantially different error rates for different sets of parameter values.
Nevertheless, we consider this repository as an additional benchmark for evaluating the
performance of the proposed algorithm.

The results of the said comparisons are presented below, along with the outputs
of each step of the proposed approach for the Tsukuba image pair (since it presents
a typical scene with adequate number of disparity levels in its provided ground truth
depth map to mimic real-world depth-based blurring scenarios), to demonstrate how
the proposed depth estimation algorithm works.

Characteristics of all Middlebury stereo image pairs used for evaluation of the pro-
posed algorithm and comparison of the output depth maps, are presented in Table 4.1.
For experimental purposes, the set of parameter values given in Table 4.2 are used.

38

Table 4.1: Middlebury Stereo Image Pairs used for Performance Evaluations

Characteristics Tsukuba Sawtooth Venus Teddy Cones
Size (pixels) 384× 288 434× 380 434× 383 450× 375 450× 375
Disparity Levels 16 20 20 60 60

4.1.1 Outputs of Proposed Method for Tsukuba Image

Colour Space Conversion

Process: Left and right input images are converted from the RGB to the CIE-Lab color
space following the pixel value transformations outlined in [42].

Results: Each pixel of both images has an L value for its lightness component, and
Fig. 4.1 (left) shows the converted left input image.

Observations: The output image shows the lightness value of each pixel.

Figure 4.1: Segmentation of L Values of Left Image using K-Means.

Segmentation

Process: Converted left input image is fed to the fast implementation of K-Means clus-
tering algorithm.

Results: The result is shown in Fig. 4.1 (right).
Observations: Small variations in L values (noise) have been absorbed into single

coherent segments representing image regions of pixels belonging to the same object,
with similar values of disparity. However, since the left image is segmented based
on just the pixels’ L values, ignoring their spatial locations (to expedite the clustering
process), it is required to refine the boundaries of objects defined by the clusters above,
so that the spatial distribution of the L values are also taken into account.

39

Segment Boundary Detection and Refinement

Process: The segment boundaries are detected and refined using the proposed approach.
Results: The outputs are shown in Fig. 4.2, with output of segment boundary point

detection, followed by that of morphological filtering, and lastly, output of connected
components analysis at the bottom.

Observations: It can be inferred from Fig. 4.2 (center), how the redundancies in
segment boundary detection have been removed from Fig. 4.2 (left), and from Fig. 4.2
(right), how the small artifacts in Fig. 4.2 (center) have been removed by the connected
components analysis technique.

Figure 4.2: Segment Boundary Detection and Refinement.

For the Tsukuba image pair, the segment boundary refinement reduces the number
of boundary pixels by nearly 53% for the parameter values of Table 4.2, such that only
19% of the left image pixels are used for disparity calculations. This greatly reduces
the number of disparity computations in the next step.

Disparity Measurement of Boundary Pixels

Process: Disparities of the boundary pixels are determined by using the SAD algorithm.
Results: The result in shown in Fig. 4.3 (left).
Observations: Boundaries of objects closer to the camera (like the lamp and the

head of the statue) are having a higher intensity (greater value of stereo disparity). This
is in direct agreement with the reality that value of disparity of a pixel is inversely
proportional to its distance (from the camera lens / human eyes).

Disparity Map Reconstruction from Boundaries

Process: Disparities of the segmented regions in the image are determined from dispari-
ties of their boundaries using proposed two-stage disparity map reconstruction method.

Results: The results are shown in Fig. 4.3 (right).

40

Figure 4.3: Disparity Map Reconstruction from Boundary Disparities.

Observations: The depth map shows the mapping of each image point to a certain
level of disparity. Objects which are closer to the camera like the lamp-shade have a
greater disparity value resulting in a brighter shade of gray. For objects further away
from the camera like the table, the shades of gray get progressively darker, as their
disparity values keep on decreasing.

To evaluate the disparity estimation of the proposed approach vis-a-vis those of
existing algorithms, initially, three pairs (left and right) of stereo images are chosen
from the Middlebury stereo vision data-set, viz. Tsukuba, Sawtooth and Venus. The
proposed algorithm is run on those three image pairs. Depth maps obtained by the
proposed algorithm are then compared against the corresponding ground truth depth
maps provided in the data-set, as well as with the depth maps created by two established
methods (SAD and NCC [10]) and a recent work by Zhen Zhang et al. [12] for those
same three image pairs. The results of those comparisons are presented below.

4.1.2 Qualitative and Quantitative Comparison with Ground Truth

To evaluate the depth estimates of the proposed method,the approach of computing error
statistics with respect to the ground truth image available with the Middlebury dataset
is considered, and the quality metric is chosen as percentage of bad matching pixels (B)
given by (4.1),

B =
1

N

∑
(x,y)

(|dC (x, y)− dT (x, y)| > δd) (4.1)

where dC (x, y) are the computed disparities and dT (x, y) are ground truth disparities,
and δd denotes the disparity error tolerance, which is taken as 1.0 as per published works
[46]. It may be further noted that, we are not at all concerned with sub-pixel accuracy
in our proposed disparity map generation methodology; hence, the disparity error tol-
erance can only (meaningfully) have integral values. Thus, a disparity error tolerance

41

of ‘1.0’ signifies that all “generated” disparities which deviate from the correspond-
ing ground truth disparities by ±1.0 are considered by our evaluation methodology as
“accurate”.

Table 4.2 shows the values of the proposed algorithm’s parameters which gave best
results and hence are considered for performance comparison. From Table 4.2, it is ev-
ident that the set of optimal parameter values is almost constant across all three images.
It is observed in the experiments that slight variations of the parameter values about
the optimal ones effect negligible changes in accuracy of depth estimation. Thus, the
proposed method is robust to changes in parameter values, like the one in [27].

Table 4.2: Parameter Values for the Three Image Pairs

Parameter Tsukuba Sawtooth Venus
Number of clusters (K)
for K-Means

10 10 10

Block size for cost aggre-
gation (odd)

9× 9 pixels 9× 9 pixels 9× 9 pixels

Disparity threshold for
reconstruction

0 1 1

Fig. 4.4 presents a comparison of the depth map produced by the proposed method
(left) with ground truth depth map (right) for the Tsukuba image. The black regions in
depth maps are those whose disparities are not compared. Further, the percentage of
bad matching pixels (including occluded image regions) was found to be 7.8%.

Figure 4.4: Resultant Depth Map Compared to Middlebury’s Ground Truth.

It can be seen from the comparison of the depth map output by the proposed method
with the ground truth that the proposed algorithm yields fairly accurate depth esti-
mation; its performance is affected mostly in some texture-less and low illumination
regions. But as the generated depth maps will be used for the purpose of selective

42

blurring, inaccurate depth estimates in regions of low texture and illumination will not
affect the blurring performance, as human eyes are more sensitive to variations in bright-
ness than colour, and hence perceptual differences resulting from blurring a dark region
would be negligible. Likewise, as blurring is performed using a weighted average of
neighbouring pixel values, a region of low texture will remain relatively unaffected after
a blurring operation, as the variation in pixel values in a texture-less region is negligi-
ble. Some incorrect depth estimations also occur in occluded regions which can be
reduced using occlusion handling techniques in future. Also, the proposed algorithm
does not calculate depth information of pixels lying near the image borders (which will
be addressed in future work), but this limitation does not significantly affect the output
of depth-based blurring, as the images borders very rarely contain objects or regions of
interest to the user.

4.1.3 Qualitative and Quantitative Comparison with State-of-Art

Table 4.3 shows the results of performance comparison of the proposed depth estima-
tion method with two established methods, viz. Sum of absolute differences (SAD) and
normalized cross-correlation (NCC) (both of which have been used as cost functions in
numerous traditional algorithms for stereo depth estimation), as well as a recent work
by Zhen Zhang et al. [12] which considered absolute difference (AD) cost function to
predict disparities. Again, the percentage of bad matching pixels is used to quantita-
tively compare depth maps generated by the proposed method, SAD, NCC and Zhen
Zhang et al. [12]. The accuracies of depth maps generated by the proposed algorithm
are also separately evaluated by considering the corresponding Middlebury ground truth
depth maps, by both including and excluding the occluded regions of the input images,
as algorithms like the proposed method and Zhen Zhang et al. [12] often do not deal
with occlusion handling explicitly. In this context, it should also be noted that, in the
work by Zhen Zhang et al. [12], the authors have not specifically mentioned clearly
whether they have evaluated their algorithm only on non-occluded image regions, or on
occluded image regions as well.

The results clearly demonstrate that the proposed method outperforms traditional
NCC and SAD methods by 33.6%, and even a recent method of Zhen Zhang et al. [12]
by 6.1% (including occluded regions of input images).

Further, the percentage of left image pixels used for stereo depth estimation is about
19% for Tsukuba, 18% for Sawtooth and 16% for Venus image pairs, implying that the
proposed algorithm is scalable to high resolution stereo images.

Figs. 4.5 and 4.6 show depth maps generated by the proposed method (left) and
ground truth depths (right) for the Sawtooth and Venus images. Their quantitative

43

Table 4.3: Performance Comparison of Proposed Algorithm

Tsukuba
%

Sawtooth
%

Venus
%

NCC [10] 41.4 9.92 17.4
SAD [10] 36.9 11.9 24.5
Zhen Zhang et al. [12] 13.9 7.22 6.12
Proposed Algorithm (including oc-
cluded regions)

7.8 5.26 4.72

Proposed Algorithm (excluding
occluded regions)

6.1 3.29 3.78

comparison results are shown above, in Table 4.3. All other depth maps supporting
performance comparison data presented in Table 4.3 can be found in [12].

Figure 4.5: Sawtooth Depth Map for Proposed Algorithm (left) and Middlebury’s
Ground Truth (right).

The proposed method is next compared with two most competitive depth estimation
techniques, viz. Graph-cut [44] and TV-based [45], and the results are shown in Table
4.4 and Table 4.5 respectively. The same quality metric, viz., Percentage of bad match-

ing pixels is used, (with the value of δd denoting the disparity error tolerance, taken
as 1.0) to quantitatively compare depth maps generated by the proposed method and
the Graph-cut based method [44]. To compare the results of the proposed method with
the TV-based method [45], a different quality metric, viz., Average Absolute Disparity

Error (AADE) is used, similar to that of TV-based method [45].
Analysis of results presented in Table 4.4 and Table 4.5 shows that, in cases where

the most competitive recent methods like Graph-cut [44] are able to successfully address
the issue of occlusions in the input image (by adopting an expansion-moves approach
over swap-moves approach), the proposed method has a definite scope of improvement,

44

Figure 4.6: Venus Depth Map for Proposed Algorithm (left) and Middlebury’s Ground
Truth (right).

Table 4.4: Performance Comparison of Proposed Algorithm with Graph-cut Method

Algorithm Execution on Non-Occluded Image Regions Tsukuba %
Proposed Method without Occlusion Handling 6.1
Kolmogorov’s Graph-cut Method (using expansion-moves) 1.9
Kolmogorov’s Graph-cut Method (using swap-moves) 13.6

Table 4.5: Performance Comparison of Proposed Algorithm with TV-based Method

Tsukuba
Ball Buntex Bdisc

Sawtooth
Ball Buntex Bdisc

Venus
Ball Buntex Bdisc

Proposed Method 0.56, 0.70, 1.30 0.44, 0.42, 1.58 0.49, 0.59, 1.28
TV-based Method 0.29, 0.24, 0.51 0.23, 0.19, 0.41 0.24, 0.26, 0.39

since occlusions have not been considered as of now. But, using the swap-moves ap-
proach, where the Graph-cut based method fails to properly handle occlusions in the in-
put image, the proposed algorithm performs significantly better. Also, it must be noted
that handling occlusions in input images entails a higher computational complexity, as
evident from the authors run-time calculation [44].

On the other hand, TV-based methods like [45] give better disparity estimates by
iteratively refining left-to-right and right-to-left initial disparity maps (obtained using
a correlation-based method). The results are shown in Table 4.5 where, using similar
evaluation methodology as authors [45], the performance of the proposed algorithm has
been quantitatively compared in three different types of areas in the image, classified
as un-textured (Buntex), discontinuous (Bdisc) and the entire image (Ball), for only non-
occluded pixels in all three cases. Understandably, the proposed method yields com-
paratively greater error rates, as the proposed method does not have any initial disparity

45

maps to start with, as it builds it from scratch.
For the final set of comparisons w.r.t the proposed algorithms error-rate, once more,

the Tsukuba image pair is considered (as it represents a scene which can be a typical
candidate for many real-world depth-based blurring scenarios). The Stereo Evaluation
table of the Middlebury website is used to compare the proposed algorithms error-rate
against those of numerous others, based on their output depth maps submitted to the
table by their corresponding authors, and evaluation done by the website itself. A set
(fixed) of parameter values is used: Number of K-Means Clusters (K) = 10, Block Size
for Cost Aggregation = 9× 9 pixels, and Disparity Threshold = 1.0 for all four standard
data-set stereo image pairs required for evaluation (Tsukuba, Venus, Teddy and Cones).
Then, the generated depth maps are submitted through the Middlebury websites online
submission form for evaluation and comparison against their repository of results of
several existing state-of-the-art algorithms.

The comparison results are shown in Fig. 4.7, with the proposed method labelled
YOUR METHOD as per the Stereo Evaluation table of the Middlebury website. The
original table has more than 150 entries and cannot fit within the space constraints of
this paper, so the table was truncated from the 7th entry onward, till the 5th entry before
the one corresponding to the proposed method. The reason for this is, as the table entries
are sorted by increasing order of error-rate for the Tsukuba image pair, by truncating
the table in the said fashion, one can see some of the best performing methods, followed
by few methods which perform slightly better than the proposed method, followed my
results of the proposed method, and lastly, those of all the 38 methods which perform
worse than the proposed method. The disparity error tolerance, δd has been taken to be
the most stringent permissible, viz. 0.5, which translates to finding (the complement of)
the percentage of exactly matching pixel disparities in case methods like the proposed
method, which do not compute sub-pixel disparities.

From an analysis of the results presented in Fig. 4.7, one can conclude that the pro-
posed method performs better for nonocc (non-occluded) and all input image regions,
but does not produce up-to-the-mark results for the disc regions (which denote regions
of disparity discontinuities) for all the four (input) test image pairs. Since many disc

regions coincide with object boundaries, hence improvement of depth estimation per-
formance in these types of image regions can directly translate to an improved overall
depth-based blurring performance and so needs to be addressed as part of future work.
Moreover, the error-rate for outputs of the proposed method is much higher for the
Teddy and Cones pairs (whose ground truth depth maps have 60 disparity levels each)
than the Tsukuba and Venus pairs (whose respective ground truth depth maps have 16
and 20 disparity levels). Hence, there exists a definite scope of betterment of the pro-

46

Figure 4.7: Truncated Middlebury Stereo Evaluation Table comparing the Proposed
Method vs. State-of-the-Art.

47

posed method for scenarios requiring large number of depth levels.

4.1.4 Comparison of Serial Execution Time with State-of-Art

To compare the running time of the proposed algorithm with those of state-of-the-art
stereo disparity estimation algorithms, the approach described in a very recent work by
Tippetts et al. [14] is partly adopted. In their work, authors evaluated numerous pub-
lished stereo vision algorithms, and evaluate their run-time performance. Their evalua-
tion metric is millions of disparity evaluations per second (Mde/s), which is calculated
from the time to compute the disparity map by an algorithm for one frame, t, is given by
(4.2), where W is the width and H , the height of the input image, and D, the number of
disparity levels. Since the authors evaluated many of the algorithms on images of dif-
ferent sizes, this resulted in different runtimes. So, values of execution time they report,
include the highest performance each algorithm achieved, along with the corresponding
image size.

Mde/s =
W ×H ×D

t
× 1

1, 000, 000
(4.2)

The authors observed that multiple factors can influence runtime measurements of
stereo vision algorithms, such as, the computational power of a CPU on which it is
executed, programming language in which it is implemented, skill and effort of pro-
grammers in optimizing the implementation, parallelization techniques used, etc. Also,
it is often necessary to make such a comparison when deciding which algorithm to im-
plement for a given application. Thus, they include all published runtimes achieved by
the stereo vision algorithms they evaluated, as well as all available hardware details, to
let the reader make such comparisons.

The authors also discourage the practice of scaling runtime measurements directly
by a processor clock speed, as it ignores other factors, such as processor pipelining,
cache design, memory subsystem etc. while comparing running times of two or more
algorithms implemented and executed on processors with widely varying configurations
and clock speeds. Instead, they collected processor bench-mark values for each of the
specific CPUs on which their reviewed methods were executed from the PassMark Soft-
ware CPU benchmark table. Using these values of CPU benchmarks, they calculated a
normalizing factor for each of those CPUs, which were later used to scale the run-times
of all the depth estimation algorithms running on those CPUs. In their performance
comparison tables and graphs, they provided both un-normalized and normalized run-
times of their surveyed methods to aid the process of comparison. However, they have
not mentioned the particular formula or method using which the normalizing factor was

48

calculated. Further, the processor on which the implementation of the proposed stereo
depth estimation method was executed, had a different configuration and clock speed
compared to the CPUs mentioned in their work. Hence, the un-normalized run-times
of the proposed method are reported, along with the CPU configuration specifications
used for our experiments and details of the corresponding input stereo pairs, in terms of
width, height, and number of disparity levels of the test images, to let the reader make
appropriate comparisons.

Table 4.6: Comparison of Proposed Algorithm with State-of-the-Art Methods w.r.t
Computation Time

Method Run-Time
(seconds)

Input Stereo Im-
age Pair
Width × Height
(Disparities)

Mde/s Hardware

Proposed 1.07 450 × 375 (60) 9.4626 Core i7-2600
3.40 GHz

za [14] 1.6 450 × 375 (60) 6.3281 P4 3.0 GHz
we [14] 2.57 450 × 375 (60) 3.9382 Core 2 Duo

2.66 GHz
Proposed 0.84 434 × 383 (20) 3.9342 Core i7-2600

3.40 GHz
sd [14] 1.7 434 × 383 (20) 1.9556 N/A
sc [14] 1.79 434 × 383 (20) 1.8572 N/A
gp [14] 0.46 384 × 288 (16) 3.8467 Core 2 Duo

2.80 GHz
Proposed 0.57 384 × 288 (16) 3.1043 Core i7-2600

3.40 GHz
cg [14] 0.81 384 × 288 (16) 2.1845 P4 2.8 GHz
Proposed 12.985 1920 × 1080 (60) 9.5815 Core i7-2600

3.40 GHz
Proposed 10.188 1920 × 1080 (16) 3.2565 Core i7-2600

3.40 GHz

Table 4.6 shows results of comparison of running time of the implementation of
the proposed algorithm in MATLAB version 2013b in terms of Mde/s against some of
the best performing methods surveyed by authors [14]. In Table 4.6, the results are
grouped according to the input stereo image pair. The entries within each such group
was sorted on the decreasing order of Mde/s, following a similar approach of Tippetts
et al. [14]. The last two entries of Table 4.6 are for a True-HD resolution stereo image
pair comprising a stereo frame, which were processed using proposed algorithm and
the results show its scalability.

49

While interpreting the computation time performance of the proposed algorithm
vis-a-vis those of other state-of-the-art algorithms presented in Table 4.6, one should
not forget, that the proposed methods entire implementation is in MATLAB, which is,
largely, an interpreted language. Thus, it may often run comparatively slower than the
C / C++ / OpenCV implementations of other methods surveyed by the authors [14].

4.1.5 Depth-based Blurring of Tsukuba and Real-World Images

Fig. 4.8 shows the proposed GUI, which lets users visualize the entire range of depth
levels present in the depth map output by the proposed method. From this GUI, the
user can pick depth range(s) as per his (her) choice of region(s) or object(s) of interest,
which he (she) wants to keep in focus. Accordingly, the blur map will be generated.

Figure 4.8: GUI showing Depth Levels in Depth Map output by Proposed Method.

Next, the results of depth-based blurring on the Tsukuba image using depth maps
output by the proposed algorithm are presented in Fig. 4.9. In the top-right image, only
the lamp, and in the bottom-left one, only the statue-head and the table are in focus,
as per input depths ranges of interest. Multiple in-focus depth ranges, like the bottom-
right image extend the methods like [1]. It is interesting to note that the incorrect depth
estimates of the proposed algorithm in the texture-less and low illumination regions do
not (noticeably) affect the depth-based blurring.

The results of depth-based blurring on a real-world scene which are captured using
a Sony HDR-TD10 3D camcorder and later processed using the proposed method are
presented in Fig. 4.10. The input stereo image pair is extracted from the frames of a
short 3D (stereo) video clip shot using the said 3D camcorder, and only the left frame
is shown in Fig. 4.10. It is interesting to note that even though no stereo rectification
algorithm is applied to the extracted stereo image pair prior to its processing with the
proposed method, yet the generated output image shows very few inconsistencies.

50

(a) (b)

(c) (d)

Figure 4.9: Depth-based Blurring on (a) Tsukuba: Original Image, (b & c) Depth-based
Blurring with Single Depth Range in Focus, and (d) Depth-based Blurring with Multiple
Depth Ranges in Focus.

Figure 4.10: Original Image (left) and Depth-based Blurring with Single Depth Range
in Focus (right).

51

4.2 Results of Parallel Algorithm using JTP and APARAPI

Lastly, the results of parallelization of the computationally intensive, yet parallelizable
steps of the proposed depth extraction algorithm using CPU (Java Thread Pool) and
GPU (APARAPI) separately, and then by combining them are presented in Table 4.7.
Experiments are performed on a PC with an Intel i7-2600 quad-core @ 3.40 GHz CPU
with 8 GB RAM and NVIDIA NVS 300 GPU with 2 compute units and 512 MB RAM.
In the combined implementation, four JTP worker threads and two APARAPI kernels
are invoked simultaneously, as it gave best results.

Table 4.7: Results of Parallelization of Proposed Algorithm

No. of
Images

Serial
Time (ms)

JTP-only
Time (ms)

APARAPI-only
Time (ms)

JTP+APRARAPI
Time (ms)

150 73191 32396 17331 13822
200 96361 42391 22982 16595
250 116909 47070 28514 20192

The increase in processing speed obtained by parallelizing serial algorithms and
running on CPUs / GPUs is quantitatively described by a metric called speed-up factor
as shown in (4.3).

Speedup =
ExecutionT imeSerial
ExecutionT imeParallel

(4.3)

Speed-ups achieved over serial implementation by parallelizing proposed algorithm
and executing serial and parallel versions on CPU and GPU with an input stereo im-
age sequence of 4096 × 2304 pixels each are given in Table 4.8. Maximum speed-up
obtained is 5.8 for a sequence of 250 stereo images, for CPU+GPU (combined) par-
allelization approach. It is observed that, generally with increase in the number of
multi-processing units (cores) and increase in speed of each processing unit, parallel
executions become quicker and hence speed-up increases following a sub-linear trend.
It is not perfectly linear due to many causes, the most significant of which is a factor
called parallelization overhead, which deals with coordinating activities of different
processing units to collectively achieve a single task, like the distribution of total work-
load among all parallel processing units, collecting the intermediate processing results
from each unit and compiling them to form the output.

From Fig. 4.11, it can be easily inferred that, rate of increase of running time of
the proposed algorithm is greatest for the serial implementation, followed successively
by the JTP, APARAPI and the JTP+APRARAPI (combined) ones, in decreasing order.
This is because GPUs are more suitable for running data-parallel workloads than CPUs,

52

Table 4.8: Speed-ups Achieved by Parallelization of Proposed Algorithm

No. of
Images

JTP-
only

APARAPI-
only

JTP+APRARAPI

150 2.3 4.2 5.3
200 2.3 4.2 5.8
250 2.5 4.1 5.8

and the combined approach utilizes both for parallelization.

Figure 4.11: Results of Parallelization of Proposed Algorithm.

4.3 Results of Disparity Estimation Error Detection Approach

In this section, both qualitative and quantitative performance evaluation and compari-
son of the proposed algorithm with LRC w.r.t both error detection capability and exe-

cution time are presented.
The said evaluation is done by considering different types of image regions (‘all’,

‘nonocc’, and ‘disc’) of four rectified stereo image pairs listed in Table 4.9 and their
ground truth depth maps from the Middlebury Stereo Vision dataset1. Table 4.9 also
lists the percentage of total number of left image pixels comprising the ‘all’ (Pall),
‘nonocc’ (Pnonocc), and ‘disc’ (Pdisc) regions.

The said comparison is performed by executing a popular technique for detecting
estimation errors in initial disparity maps for dense stereo correspondence algorithms,
viz. left-right consistency check (LRC), on the same four stereo image pairs mentioned

1http : //vision.middlebury.edu/stereo/

53

above. Then the error detection capability and execution time of LRC and proposed
methods were compared.

4.3.1 Proposed Evaluation Metric

For stereo correspondence algorithms, the most widely used evaluation metric to quan-
tify the error rate is the percentage of bad matching pixels (B) given by (4.4),

B =
1

N

∑
(x,y)

(|dC (x, y)− dT (x, y)| > δd) (4.4)

where dC (x, y) and dT (x, y) are computed and ground truth disparities, respectively;
δd denotes disparity error tolerance, which is taken as 1.0 as per published works [46].

The aforementioned error metric is more suitable for performance comparison if
and only if complete depth maps are obtained as end-products of dense stereo cor-
respondence algorithms. However, the proposed method deals with the intermediate

(preliminary) results, viz. initial depth maps generated in the early stages of stereo
correspondence algorithms. These maps are further refined by the algorithm in the later
stages. The proposed approach is only trying to assist the algorithm by providing a con-

fidence measure for the computed set of initial disparities, and a classification method

for categorizing initial disparities as good or bad (correct or incorrect).
In order to quantitatively evaluate the error detection capability of any algorithm

on initial disparity maps using the traditional metric given in (4.4), it is required to to
compute the percentage of bad pixels among the disparity estimates which the algorithm
has already classified as accurate. Thus, the interpretation of (4.4) reflects the fact that
N now represents the total number of pixels (with co-ordinates (x, y)) whose disparity
estimates have been already classified as accurate by the algorithm.

However, such a metric, if used alone for performance comparison, would have one
major drawback: in case, an algorithm is biased towards computing a very stiff thresh-
old value Ent Th, it may always end up marking a very few initial disparities (the most
promising ones) as accurate, ignoring many other (potentially good) initial disparity
estimates in the process. Moreover, many dense stereo correspondence algorithms rely
on a confidence measure to identify potentially good initial disparity estimates, and try

54

to reconstruct the complete depth map from those reliable disparities. Now, if such
reliable disparities are a very few in number, it may adversely affect the reconstruction
process as well as the final output, both in terms of quality (accuracy) and efficiency

(computational cost).
Hence, in view of the points discussed above, this thesis proposes a novel quality

metric, M to quantify and compare the error detection performance of algorithms on
initial disparity maps, defined successively through (4.5), (4.6) and (4.7),

Br =
1

Nr

∑
(xr,yr)

(|dC (xr, yr)− dT (xr, yr)| > δd) (4.5)

Pr =
Nr

Na

(4.6)

M =
Pr

Br

(4.7)

where Na represents the total number of pixels of the initial depth map and Nr denotes
the total number of pixels (disparity estimates) with co-ordinates (xr, yr) that the algo-
rithm has identified as reliable or accurate.

Looking at the definition of M in (4.7), it is intuitive that two ratios are considered
in the proposed quality metric: Pr denoting the proportion of total number of initial
disparity estimates which the algorithm has marked as reliable; Br denoting the pro-
portion of truly inaccurate disparity estimates (as compared to the ground truth) among
those marked as accurate or reliable by the algorithm. The main intention is to propose
a quality metric which favors those algorithms that correctly classify a greater propor-
tion of initial disparity estimates as accurate. Thus, it is intuitive to place Pr in the
numerator and Br in the denominator.

4.3.2 Evaluation Methodology

1. Experimental Setup: Both the proposed and the left-right consistency check
methods (for detecting disparity errors in initial depth maps generated by dense
stereo correspondence algorithms) are fully implemented in MATLAB version
2013b. Further, no form of task or data parallelism are used anywhere in the im-
plementation. All experiments for evaluation and comparison of the two methods
are performed on a PC with Intel i7-2600 quad-core, 3.40 GHz CPU, 8 GB RAM
running on the Microsoft Windows 7 platform.

2. Generating Initial Disparity Maps: The initial disparity maps for the four rec-
tified stereo image pairs mentioned in Table 4.9 are calculated using a simple

55

(fixed-sized) block matching algorithm, based on the Sum of Absolute Differ-
ences (SAD) cost function and Winner Takes it All (WTA) strategy for deter-
mining pixel correspondences. This represents a typical method of calculating
the initial (dense) disparity estimates for numerous dense stereo correspondence
algorithms. Experiments are performed using moderate block sizes of 5 × 5 pix-
els and 7 × 7 pixels (separately). Execution time is recorded w.r.t computing
only the right-to-left depth map in case of proposed method, and additionally, the
left-to-right depth map in case of the LRC method.

3. Parameter Values: The experiments are performed using moderate neighborhood
(pixel) sizes of 5 × 5, 7 × 7 (separately) for both the proposed and left-right
consistency check (LRC) methods. Further, a (standard) threshold value of 2.0 is
considered for LRC method in all experiments.

4. Evaluation Metrics: In addition to the proposed quality metric (M), Br and Pr,
this thesis uses three additional (traditional) metrics, viz. Precision, Recall and
Accuracy, as defined in (4.8), (4.9) and (4.10) respectively, to evaluate and com-
pare the proposed method quantitatively with the LRC method.

Precision =
tp

tp+ fp
(4.8)

Recall =
tp

tp+ fn
(4.9)

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(4.10)

where, ‘tp’ is the abbreviation for ‘true positives’, ‘tn’ for ‘true negatives’, ‘fp’
for ‘false positives’, and ‘fn’ for ‘false negatives’.

In this context, it is meaningful to unambiguously specify the various terms used
w.r.t calculation of few traditional metrics which were used (Precision, Recall and
Accuracy). Here, positives refer to the disparity estimates which are marked as
unreliable by the proposed method (or the left-right consistency check method),
and similarly, all others are referred to as negatives, whereas by ‘true’ this thesis
refers to the fact of a positive or negative being classified correctly (w.r.t the
ground truth depth map), and lastly, by ‘false’, this thesis refers to the case of an
incorrect classification.

5. Experimentation and Data Collection: Both the proposed method and the left-
right consistency check method were executed on the previously generated initial

56

disparity maps, and noted the execution time. Further, the proposed quality metric
M is calculated, along with as Br, Pr, Precision, Recall, and Accuracy at the end
of each of the executions.

4.3.3 Quantitative Comparison of Outputs

In accordance with the discussed evaluation methodology, the performance data for
both proposed method and left-right consistency check method, as obtained from the
experiments, are presented in Tables 4.10–4.21, and their execution times are presented
in Table 4.22. Tables 4.10–4.15 show the values of all evaluation metrics for experi-
ments where the size of neighborhood was taken as 5 × 5 pixels, and Tables 4.16–4.21
show the results of taking neighborhood size as 7 × 7 pixels. Further, Tables 4.10,
4.11, 4.16 and 4.17 evaluate the Middlebury stereo pairs for ‘all’ image regions, while
Tables 4.12, 4.13, 4.18 and 4.19 do so for ‘nonocc’ (non-occluded) ones, and lastly,
Tables 4.14, 4.15, 4.20 and 4.21 for ‘disc’ (depth discontinuities), as per Middlebury’s
standard nomenclature for (evaluation) dataset image regions2.

2http : //vision.middlebury.edu/stereo/eval/

57

58

59

From experimental results, following observations can be made w.r.t performance
comparison of proposed method with left-right consistency check (LRC):

1. The error rate, Br is significantly lower in case of the proposed method, which
clearly indicates its superiority.

2. The proposed quality metric, M is noticeably higher for the proposed method,
implying its better performance.

3. For all stereo image pairs, execution time is much lower for proposed method.
Not only that, the difference between execution times of proposed method and
left-right consistency check (LRC) increases drastically with increase in the res-

olution and number of disparity levels of the stereo image pairs. This shows that
proposed method is much more scalable to high resolution stereo pairs with large

number of disparity levels as compared to LRC method.

4. With a very few exceptions, the proportion of initial disparity estimates marked as
reliable, Pr is appreciably lower for the proposed method than the LRC method.

5. Both precision and accuracy are noticeably higher for the proposed method as
compared to the LRC method, while the ‘Recall’ value was 100.0 for all the
experiments, both in case of the proposed method and the LRC method.

6. From above two points, one can infer, while all disparity estimates which were
classified as accurate by both proposed and LRC methods are actually so, (as ev-
ident from a perfect recall score for both of them), the proposed method performs
better in identifying the inaccurate ones (as evident from the higher precision

and accuracy scores for the proposed method, when compared to LRC).

7. Looking at performance data presented in Tables 4.10–4.21 and summarizing the
above points, it can be concluded that the proposed method outperforms the LRC
method in all cases except two: for the ‘disc’ regions of the ‘Venus’ pair (in terms
of three metrics: Br, M, and Precision) using the size of neighborhood 5× 5, and

60

for the ‘disc’ regions of the ‘Cones’ pair (only in terms of M) for a neighborhood
size of 7× 7 pixels. Since image regions denoting depth discontinuities often co-
incide with occluded regions, thus it may be concluded that in very few instances
where both the proposed and LRC methods have to identify incorrect disparity
estimates in occluded regions, the LRC method may perform slightly better than
the proposed method.

4.3.4 Qualitative Comparison of Outputs

Fig. 4.12 shows the left image of Tsukuba stereo pair and Fig. 4.13 shows its ground
truth depth map from Middlebury dataset. Fig. 4.14 and Fig. 4.15 show the outputs
of left-right consistency check and proposed method respectively using a 5 × 5 neigh-
borhood, whereas Fig. 4.16 and Fig. 4.17 show outputs (respectively) using a 7 × 7
neighborhood. The disparity estimates marked as incorrect, are shown in black. Visual
comparison of Fig. 4.14 and Fig. 4.15 show that the proposed method detects errors
in texture-less regions (where most dense stereo matching methods typically fail, like
top-right corner of Tsukuba image) with much greater accuracy.

Figure 4.12: Left Image of
Tsukuba Stereo Image Pair.

Figure 4.13: Ground Truth Depth
Map of Tsukuba.

Figure 4.14: Output of LRC
Method for Tsukuba (5 × 5).

Figure 4.15: Output of the Pro-
posed Method for Tsukuba (5× 5).

61

Figure 4.16: Output of LRC
Method for Tsukuba (7 × 7).

Figure 4.17: Output of the Pro-
posed Method for Tsukuba (7× 7).

A similar trend is observed for the Venus pair: Fig. 4.18 shows its left image and
Fig. 4.19 shows its ground truth depth map, and further, Fig. 4.20 and Fig. 4.21 show
the outputs of the left-right consistency check method and proposed method respec-
tively, using a 5 × 5 neighborhood, whereas Fig. 4.22 and Fig. 4.23 show outputs
(respectively) using a 7 × 7 neighborhood. All the disparity estimates marked as incor-

rect are shown in black.

Figure 4.18: Left Image of Venus
Stereo Image Pair.

Figure 4.19: Ground Truth Depth
Map of Venus.

Figs. 4.24–4.35 show similar visual comparisons as shown above, for the ‘Teddy’
and ‘Cones’ stereo pairs from Middlebury.

4.3.5 Graphical Analysis

Since it is clear from data presented in Tables 4.10–4.21, that the proposed method out-

performs LRC method, hence, in this subsection, the intention is to investigate, (using
graphs) the extent by which the proposed method exceeds LRC w.r.t both error detection
capability and computational speed, for different types of image regions (‘all’, ‘nonocc’,
‘disc’), as well as, using different size of neighborhoods (5 × 5 and 7 × 7 pixels).

62

Figure 4.20: Output of LRC
Method for Venus (5 × 5).

Figure 4.21: Output of the Pro-
posed Method for Venus (5 × 5).

Figure 4.22: Output of LRC
Method for Venus (7 × 7).

Figure 4.23: Output of the Pro-
posed Method for Venus (7 × 7).

Figure 4.24: Left Image of Teddy
Stereo Image Pair.

Figure 4.25: Ground Truth Depth
Map of Teddy.

63

Figure 4.26: Output of LRC
Method for Teddy (5 × 5).

Figure 4.27: Output of the Pro-
posed Method for Teddy (5 × 5).

Figure 4.28: Output of LRC
Method for Teddy (7 × 7).

Figure 4.29: Output of the Pro-
posed Method for Teddy (7 × 7).

Figure 4.30: Left Image of Cones
Stereo Image Pair.

Figure 4.31: Ground Truth Depth
Map of Cones.

64

Figure 4.32: Output of LRC
Method for Cones (5 × 5).

Figure 4.33: Output of the Pro-
posed Method for Cones (5 × 5).

Figure 4.34: Output of LRC
Method for Cones (7 × 7).

Figure 4.35: Output of the Pro-
posed Method for Cones (7 × 7).

65

Thus, the said graphs are plotted based on difference in values of three metrics, M,
Precision (P), and Accuracy (A), between the proposed method and the LRC method,
for the aforesaid three types of image regions and two sizes of neighborhood.

Figure 4.36: Average of ∆M for Proposed Method and LRC.

Figure 4.37: Average of ∆P for Proposed Method and LRC.

Figs. 4.36–4.38 clearly show that the improvement shown by the proposed method
over LRC method is of greater magnitude for non-occluded regions of the test images
in terms of ∆M. Similarly, smaller improvement is shown by the proposed method
for discontinuous regions, again in terms of ∆M. Next, another graphical comparison
is shown w.r.t absolute execution time of the proposed and the LRC method, for the
abovementioned set of neighborhood sizes and test images. From Fig. 4.39 and Fig.
4.40, it can be clearly seen that the rate of increase of execution time with increasing

number of depth levels and image resolution (Tsukuba–Cones, in an increasing order),

66

Figure 4.38: Average of ∆A for Proposed Method and LRC.

as well as increasing neighborhood size is comparatively much more in case of LRC
method than the proposed method.

Figure 4.39: Execution Times for Proposed Method.

4.3.6 Outputs of Key Steps of Proposed Method

Lastly, the outputs of certain important steps of the proposed method are presented in an
attempt to understand how they influence the final outcome. This will also possibly help
us to identify performance bottlenecks, which may adversely affect the error detection
capability of the proposed method.

Figs. 4.41–4.44 show the entropy difference images, Ent for all four Middlebury
stereo image pairs used in the experiments. It may be observed that the darker areas

67

Figure 4.40: Execution Times for LRC Method.

in all entropy difference images correspond to the black regions signifying incorrect or
unreliable disparity estimates identified by the proposed method. It may be noted that,
a neighborhood size of 5 × 5 pixels was used for generating all the entropy difference
images of Figs. 4.41–4.44.

Figure 4.41: Entropy Difference
Image for Tsukuba.

Figure 4.42: Entropy Difference
Image for Venus.

Figs. 4.45–4.52 show the ‘entropy variations in Ent D (E) against percentile values’
plots (in red color) for all four Middlebury stereo image pairs used in the experiments,
using both 5 × 5 and 7 × 7 sizes of neighborhood. The 3rd degree polynomial approx-

imating each curve is shown using dotted (black) lines.
It is quite evident from Figs. 4.45–4.52 that, as the experiments progressively use

68

Figure 4.43: Entropy Difference
Image for Teddy.

Figure 4.44: Entropy Difference
Image for Cones.

−100 −50 0 50 100 150 200 250 300
20

25

30

35

40

45

50

55

60

65
Entropy Variations in Ent_D (E) vs. Percentile Value

Percentile Value

V
a
lu

e
 o

f
E

Figure 4.45: Entropy Variations
in Ent D versus Percentiles for
Tsukuba (5 × 5).

−100 −50 0 50 100 150 200 250 300
15

20

25

30

35

40

45

50

55

60

65
Entropy Variations in Ent_D (E) vs. Percentile Value

Percentile Value

V
a
lu

e
 o

f
E

Figure 4.46: Entropy Variations
in Ent D versus Percentiles for
Tsukuba (7 × 7).

−150 −100 −50 0 50 100 150 200 250 300
10

20

30

40

50

60

70
Entropy Variations in Ent_D (E) vs. Percentile Value

Percentile Value

V
a
lu

e
 o

f
E

Figure 4.47: Entropy Variations in
Ent D versus Percentiles for Venus
(5 × 5).

−150 −100 −50 0 50 100 150 200 250 300
10

20

30

40

50

60

70
Entropy Variations in Ent_D (E) vs. Percentile Value

Percentile Value

V
a
lu

e
 o

f
E

Figure 4.48: Entropy Variations in
Ent D versus Percentiles for Venus
(7 × 7).

69

−100 −50 0 50 100 150 200 250 300
15

20

25

30

35

40

45

50

55

60

65
Entropy Variations in Ent_D (E) vs. Percentile Value

Percentile Value

V
a
lu

e
 o

f
E

Figure 4.49: Entropy Variations in
Ent D versus Percentiles for Teddy
(5 × 5).

−150 −100 −50 0 50 100 150 200 250 300
15

20

25

30

35

40

45

50

55

60

65
Entropy Variations in Ent_D (E) vs. Percentile Value

Percentile Value

V
a
lu

e
 o

f
E

Figure 4.50: Entropy Variations in
Ent D versus Percentiles for Teddy
(7 × 7).

−100 −50 0 50 100 150 200 250 300
20

25

30

35

40

45

50

55

60

65
Entropy Variations in Ent_D (E) vs. Percentile Value

Percentile Value

V
a
lu

e
 o

f
E

Figure 4.51: Entropy Variations in
Ent D versus Percentiles for Cones
(5 × 5).

−100 −50 0 50 100 150 200 250 300
15

20

25

30

35

40

45

50

55

60

65
Entropy Variations in Ent_D (E) vs. Percentile Value

Percentile Value

V
a
lu

e
 o

f
E

Figure 4.52: Entropy Variations in
Ent D versus Percentiles for Cones
(7 × 7).

70

higher percentile values (Pi), initially the curve rises steeply and then, from some point
onward, there is a slack in its rate of ascent. This happens because, at that point, most of
the “unstable” regions of incorrect disparity estimates with high variations in disparity
values (and correspondingly, entropies thereof) have already been covered; remaining

areas are relatively “stable”, and thus, do not contribute significantly in increasing the
aforementioned standard deviation (E).

Next, the pixel threshold (Ent Th) values, as determined by the proposed threshold
detection technique, are shown, for all results presented in Figs. 4.45–4.52, along with
their (nearest) corresponding percentile (Pi) no.’s and values, in Table 4.23.

From the data presented in Table 4.23, it can be inferred that, most inflection points
occur around the 30th and 50th percentile. Cases where Ent Th values exactly coincide
with the 50th percentile (value) are cases where the inflection point determined by pro-
posed method, lay outside the percentile range of P20–P80, and hence it was taken as
P50 by the proposed method.

Figs. 4.53–4.59 show the generated (initial) depth maps for the Teddy image (5 × 5
pixels neighborhood is used), showing only those pixels that correspond to the entropy

difference values greater than Pi). Seven Pi values, viz. the 20th, 30th, 40th, 50th, 60th,
70th and the 80th percentile were considered as representatives of the entire range of
allowed percentile values (20th–80th percentile).

Figure 4.53: Teddy Depth Map for 20th

Percentile.
Figure 4.54: Teddy Depth Map for 30th

Percentile.

71

Figure 4.55: Teddy Depth Map for 40th

Percentile.
Figure 4.56: Teddy Depth Map for 50th

Percentile.

Figure 4.57: Teddy Depth Map for 60th

Percentile.
Figure 4.58: Teddy Depth Map for 70th

Percentile.

Figure 4.59: Teddy Depth Map for 80th Percentile.

72

From Figs. 4.53–4.59, it can be easily observed that, with increasing values of
percentiles (Pi), there is a steady decline in number of erroneous disparity estimates
among depth map pixels. But, along with this, there is also a steady decline in the total

count of disparity estimates (including possibly accurate estimates) in the depth maps,
as take higher percentile values for Ent Th. Thus, the primary aim of the proposed
threshold determination step (as is evident from this discussion) should be to derive the
optimal threshold value that retains as many reliable disparities, and rejects as many
unreliable disparities, as possible; the depth map filtered, removing as much unreliable
estimates as possible.

4.4 Comparison of Depth Estimation w.r.t 2D, 3D & Kinect Sen-
sor

For quantitative comparison of depth estimation using 2D and 3D image processing, and
Kinect depth camera, we need a device called LIDAR (LIght Detection And Ranging).
LIDAR measures distance (or depth) by illuminating a target with a laser and analysing
the reflected light. Subsequently, the LIDAR builds the complete (ground truth) depth
map of the scene by analysing the reflected laser beams from each and every point in the
scene. However, since the LIDAR device is extremely costly and difficult to procure,
this thesis presents a (mostly) qualitative comparison of depth estimation w.r.t 2D, 3D
& Kinect. In subsequent grey-scale depth maps, lighter shades denote farther distances.

Figure 4.60: Left Image of Stereo Pair
captured using 3D Camcorder.

Figure 4.61: Depth Map of Left Image
obtained using Proposed Method.

Figs. 4.60, 4.61 and 4.62 show the results of (qualitative) comparison of the out-
put of the proposed stereo depth extraction algorithm with the depth of a similar scene
extracted by the Kinect depth camera. As can be clearly seen, Kinect is able to com-
pute depths only for a certain range of distances from the sensor, whereas, the proposed
stereo depth extraction algorithm determines the depth for almost the entire scene, ex-
cept a few rows and columns of pixels near the borders. Concretely, the percentage
of unknown depth values was 27.5% for the proposed stereo (3D) depth estimation
method, while it was 42.7% for Kinect.

73

Figure 4.62: Kinect Depth Map (left) and Kinect RGB Image (right).

Figure 4.63: Left Image of Stereo Pair. Figure 4.64: Left Image Ground Truth.

Figure 4.65: Proposed 3D Method’s
output Depth Map.

Figure 4.66: Authors’ 2D Method’s
output Depth Map.

Figure 4.67: Mapping Depth Map Grey Levels & Color Codings to Actual Distances.

74

Lastly, the qualitative comparison of our proposed method with state-of-the-art work
done by the authors in [47] w.r.t depth estimation based on stereo and mono cues, is
presented in Figs. 4.63 through 4.67.

75

5 CONCLUSION AND FUTURE WORK

As part of this thesis, a novel stereo depth estimation method is proposed. The proposed
method uses only 18% pixels of either the left or the right image, and outperforms tra-
ditional methods like SAD and NCC by up to 33.6% and a recent method developed
by Zhen Zhang et al. [12] by up to 6.1%. However, in case of some of the most
competitive algorithms like Graph-cut based methods [44], using occlusion handling
techniques, better accuracy can be obtained, sometimes at the cost of increased compu-
tational complexity. Depth-based Gaussian blurring of image regions is also performed
as per depths of users’ non-interest.

However, the use of luminance alone in the segmentation step of the proposed
method can reduce performance in the presence of shadows. Also, the proposed dis-
parity map reconstruction method may end up altering the shapes of objects, especially
in dimly lit regions of the image. However, it is also shown that, despite the proposed
algorithm’s inaccurate depth estimates in texture-less and low-illumination regions, its
blurring performance is not affected. Future work will focus on improving the depth es-
timates and the depth-map reconstruction technique in texture-less and low-illumination
areas.

Moreover, future work can be extended to comparison of the time-complexity of
the proposed depth extraction algorithm with the state-of-art algorithms such as those
based on Belief Propagation, Graph Cuts and Markov Random Fields.

This thesis also proposes a novel confidence measure for quantifying the reliabil-
ity of initial disparity estimates produced in preliminary stages of dense stereo corre-
spondence algorithms. A novel classification technique for categorizing the said initial
disparity estimates as correct or incorrect is also proposed, based on the values of that
confidence measure. Furthermore, a novel evaluation metric is also proposed for eval-
uation and comparison of the error detection capability of the proposed method with
other methods. The performance of the proposed method is compared with left-right
consistency check method (which serves a similar purpose as the proposed method).
For this comparison, the proposed novel quality metric and traditional metrics such as
percentage of bad matching pixels, precision, recall, and accuracy are used. Experi-
ments are performed based on four rectified stereo image pairs from the Middlebury
stereo vision dataset. Experimental results show that in majority cases, our proposed
method fare significantly better, both in terms of improved error detection capability

76

and reduced execution time (by a difference of up to 25.6 in terms of quality metrics,
and 94.3% in terms of execution time).

One limitation of the proposed work stems from the fact that, in a very few cases,
the curve fitting (which uses the Least Squares method and employs a 3rd degree poly-
nomial) fails to properly approximate complex entropy variations in the entropy map
of initial disparity map, Ent D (E) with percentile values of entropy difference image
(Ent). In such cases, the proposed method determines a sub-optimal threshold value for
classifying the initial disparity estimates as correct or incorrect.

Thus, future work may focus on improving the threshold determination stage of our
proposed method and thereby making it more robust w.r.t threshold detection.

Further, the proposed work can be extended to Web-based and mobile Android-
based applications, like that of Google Camera.

References

[1] Popkin, T.; Cavallaro, A.; Hands, D., "Efficient depth blurring with occlusion handling," Image Processing (ICIP), 2011 18th IEEE
International Conference on , vol., no., pp.2585,2588, 11-14 Sept. 2011, doi: 10.1109/ICIP.2011.6116193

[2] Sungkil, L.; Jounghyun, K. G.; Seungmoon, C., "Real-Time Depth-of-Field Rendering Using Anisotropically Filtered Mipmap
Interpolation," Visualization and Computer Graphics, IEEE Transactions on , vol.15, no.3, pp.453,464, May-June 2009, doi:
10.1109/TVCG.2008.106

[3] Popkin, T.; Cavallaro, A.; Hands, D., "Image Coding Using Depth Blurring for Aesthetically Acceptable Distortion," Image Processing,
IEEE Transactions on , vol.20, no.11, pp.3039,3050, Nov. 2011, doi: 10.1109/TIP.2011.2145385

[4] Kuthirummal, S.; Nagahara, H.; Changyin, Z.; Nayar, S. K., "Flexible Depth of Field Photography," Pattern Analysis and Machine
Intelligence, IEEE Transactions on , vol.33, no.1, pp.58,71, Jan. 2011, doi: 10.1109/TPAMI.2010.66

[5] Popkin, T.; Cavallaro, A.; Hands, D., "Distance blurring for space-variant image coding," Acoustics, Speech and Signal Processing,
2009. ICASSP 2009. IEEE International Conference on , vol., no., pp.665,668, 19-24 April 2009, doi: 10.1109/ICASSP.2009.4959671

[6] Xiaojun, H.; Lianghao, W.; Junjun, H.; Dongxiao, L.; Ming, Z., "A Depth Extraction Method Based on Motion and Geometry for 2D to
3D Conversion," Intelligent Information Technology Application, 2009. IITA 2009. Third International Symposium on , vol.3, no.,
pp.294,298, 21-22 Nov. 2009, doi: 10.1109/IITA.2009.481

[7] Xi, Y.; You, Y.; Guihua, E.; Qionghai, D., "Depth map generation for 2D-to-3D conversion by limited user inputs and depth
propagation," 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON), 2011 , vol., no.,
pp.1,4, 16-18 May 2011, doi: 10.1109/3DTV.2011.5877167

[8] Yeong-Kang, L.; Yu-Fan, L.; Ying-Chang, C., "An Effective Hybrid Depth-Generation Algorithm for 2D-to-3D Conversion in 3D
Displays," Display Technology, Journal of , vol.9, no.3, pp.154,161, March 2013, doi: 10.1109/JDT.2012.2224637

[9] Chao, L.; Christopher, L., "Depth map estimation from motion for 2D to 3D conversion," Electro/Information Technology (EIT), 2012
IEEE International Conference on , vol., no., pp.1,4, 6-8 May 2012, doi: 10.1109/EIT.2012.6220749

[10] Lazaros, N.; Sirakoulis, G.; Gasteratos, A., “Review of Stereo Vision Algorithms: From Software to Hardware,” Optomechatronics,
International Journal of, vol.2, no.4, pp.435,462, 2008

[11] Jun, X.; Linyuan, X.; Liqun, L.; Zhentao, Z., "A segment-based stereo matching method with ground control points," Environmental
Science and Information Application Technology (ESIAT), 2010 International Conference on , vol.3, no., pp.306,309, 17-18 July 2010,
doi: 10.1109/ESIAT.2010.5568363

[12] Zhen, Z.; Yifei, W.; Dahnoun, N., "A novel algorithm for disparity calculation based on stereo vision," Education and Research
Conference (EDERC), 2010 4th European, vol., no., pp.180, 184, 1-2 Dec. 2010

[13] Sunyoto, H.; Van der Mark, W.; Gavrila, D. M., "A comparative study of fast dense stereo vision algorithms," Intelligent Vehicles
Symposium, 2004 IEEE, vol., no., pp.319, 324, 14-17 June 2004, doi: 10.1109/IVS.2004.1336402

[14] Tippetts, B.; Lee, D.; Lillywhite, K.; Archibald, J., “Review of stereo vision algorithms and their suitability for resource-limited
systems,” Real-Time Image Processing, Journal of, Springer-Verlag, pp.1,21, 2013

[15] Hirschmuller, H.; Scharstein, D., "Evaluation of Cost Functions for Stereo Matching," Computer Vision and Pattern Recognition, 2007.
CVPR '07. IEEE Conference on, vol., no., pp.1, 8, 17-22 June 2007, doi: 10.1109/CVPR.2007.383248

[16] Tombari, F.; Mattoccia, S.; Di Stefano, L.; Addimanda, E., "Classification and evaluation of cost aggregation methods for stereo
correspondence," Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, vol., no., pp.1, 8, 23-28 June
2008, doi: 10.1109/CVPR.2008.4587677

[17] Abdollahifard, M.; Faez, K.; Pourfard, M., "Fast stereo matching using two stage color-based segmentation and dynamic programming,"
Mechatronics and its Applications, 2009. ISMA '09. 6th International Symposium on, vol., no., pp.1, 6, 23-26 March 2009, doi:
10.1109/ISMA.2009.5164848

[18] Changick K., "Segmenting a low-depth-of-field image using morphological filters and region merging," Image Processing, IEEE
Transactions on , vol.14, no.10, pp.1503,1511, Oct. 2005, doi: 10.1109/TIP.2005.846030

[19] Xiaobing, W.; Yonghong, S.; Yuanlin, Z., "Natural Scene Text Detection with Multi-channel Connected Component Segmentation,"
Document Analysis and Recognition (ICDAR), 2013 12th International Conference on, vol., no., pp.1375, 1379, 25-28 Aug. 2013, doi:
10.1109/ICDAR.2013.278

[20] Vishwanath, N.; Somasundaram, S.; Ravi, M. R. R.; Nallaperumal, N. K., "Connected component analysis for Indian license plate infra-
red and color image character segmentation," Computational Intelligence & Computing Research (ICCIC), 2012 IEEE International
Conference on , vol., no., pp.1,4, 18-20 Dec. 2012, doi: 10.1109/ICCIC.2012.6510323

[21] Zirari, F.; Ennaji, A.; Nicolas, S.; Mammass, D., "A Document Image Segmentation System Using Analysis of Connected Components,"
Document Analysis and Recognition (ICDAR), 2013 12th International Conference on, vol., no., pp.753, 757, 25-28 Aug. 2013, doi:
10.1109/ICDAR.2013.154

[22] Min, L.; Xiaolin, Z.; Xiaoping, W.; Hongyan, L.; Shaoxiang, Z.; Liwen, T., "Segmentation of brain tissue based on connected component
labeling and mathematic morphology," Biomedical Engineering and Informatics (BMEI), 2011 4th International Conference on , vol.1,
no., pp.482,485, 15-17 Oct. 2011, doi: 10.1109/BMEI.2011.6098294

[23] Moftah, H. M.; ella Hassanien, A.; Shoman, M., "3D brain tumor segmentation scheme using K-mean clustering and connected
component labeling algorithms," Intelligent Systems Design and Applications (ISDA), 2010 10th International Conference on , vol., no.,
pp.320,324, Nov. 29 2010-Dec. 1 2010, doi: 10.1109/ISDA.2010.5687244

[24] Bellala, B., Fatima, Z.; Souami, F., "Color image segmentation by a genetic algorithm based clustering and Connected Component
Labeling," Microelectronics (ICM), 2012 24th International Conference on, vol., no., pp.1, 4, 16-20 Dec. 2012, doi:
10.1109/ICM.2012.6471432

[25] Kang-Sun C., "Hierarchical block-based disparity estimation," Consumer Electronics (GCCE), 2012 IEEE 1st Global Conference on,
vol., no., pp.493, 494, 2-5 Oct. 2012, doi: 10.1109/GCCE.2012.6379668

[26] Shiping, Z.; Yang, Y., "Virtual View Rendering Based on Self-adaptive Block Matching Disparity Estimation," Industrial Control and
Electronics Engineering (ICICEE), 2012 International Conference on , vol., no., pp.947,950, 23-25 Aug. 2012, doi:
10.1109/ICICEE.2012.251

[27] Zeng-Fu, W.; Zhi-Gang, Z., "A region based stereo matching algorithm using cooperative optimization," Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on, vol., no., pp.1, 8, 23-28 June 2008, doi: 10.1109/CVPR.2008.4587456

[28] Di, L.; Yu, D., "A two-step stereo correspondence algorithm based on combination of feature-matching and region-matching," Strategic
Technology (IFOST), 2013 8th International Forum on , vol.2, no., pp.51,55, June 28 2013-July 1 2013, doi:
10.1109/IFOST.2013.6616858

[29] Shih, H.-C.; Hsiao, H.-F., “A depth refinement algorithm for multiview video synthesis,” in Acoustics Speech and Signal Processing
(ICASSP), 2010 IEEE International Conference on, March 2010, pp. 742–745

[30] Xu, X.; Po, L.-M.; Cheung, K.-W.; Ng, K.-H.; Wong, K.-M.; Ting, C.-W., “A foreground biased depth map refinement method for dibr
view synthesis,” in Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, March 2012, pp. 805–
808

[31] Chang, Y.-L.; Tsai, Y.-P.; Chang, T.-H.; Chen, Y.-R.; Lei, S., “A depth map refinement algorithm for 2d-to-3d conversion,” in Acoustics,
Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, March 2012, pp. 1437–1440

[32] Vijayanagar, K.; Loghman, M.; Kim, J., “Refinement of depth maps generated by low-cost depth sensors,” in SoC Design Conference
(ISOCC), 2012 International, Nov 2012, pp. 355–358

[33] Luo, H.-L.; Shen, C.-T.; Chen, Y.-C.; Wu, R.-H.; Hung, Y.-P., “Automatic multi-resolution joint image smoothing for depth map
refinement,” in Pattern Recognition (ACPR), 2013 2nd IAPR Asian Conference on, Nov 2013, pp. 284–287

[34] Tereki, B.; Oittinen, P.; Szirmay-Kalos, L., “Informational aesthetic measure for 3d stereoscopic imaging,” in Hungarian Association
for Image Processing and Pattern Recognition, 2013. (KEPAF 2013). Proceedings. 9th Conference of, Jan 2013, pp. 57–66. [Online].
Available: http://kepaf2013.mik.uni-pannon.hu/proceedings/ pdfs/F01_05.pdf

[35] Smisek, J.; Jancosek, M.; Pajdla, T., "3D with Kinect," Computer Vision Workshops (ICCV Workshops), 2011 IEEE International
Conference on , vol., no., pp.1154,1160, 6-13 Nov. 2011, doi: 10.1109/ICCVW.2011.6130380

[36] Macknojia, R.; Chavez-Aragon, A.; Payeur, P.; Laganiere, R., "Experimental characterization of two generations of Kinect's depth
sensors," Robotic and Sensors Environments (ROSE), 2012 IEEE International Symposium on , vol., no., pp.150,155, 16-18 Nov. 2012,
doi: 10.1109/ROSE.2012.6402634

[37] Han, J.; Shao, L.; Xu, D.; Shotton, J., "Enhanced Computer Vision with Microsoft Kinect Sensor: A Review," Cybernetics, IEEE
Transactions on , vol.PP, no.99, pp.1,1, 0, doi: 10.1109/TCYB.2013.2265378

[38] Essmaeel, K.; Gallo, L.; Damiani, E.; De Pietro, G.; Dipanda, A., "Temporal Denoising of Kinect Depth Data," Signal Image Technology
and Internet Based Systems (SITIS), 2012 Eighth International Conference on , vol., no., pp.47,52, 25-29 Nov. 2012, doi:
10.1109/SITIS.2012.18

[39] Wei, Y.; Tsuhan, C.; Franchetti, F.; Hoe, J. C., "High Performance Stereo Vision Designed for Massively Data Parallel Platforms,"
Circuits and Systems for Video Technology, IEEE Transactions on , vol.20, no.11, pp.1509,1519, Nov. 2010, doi:
10.1109/TCSVT.2010.2077771

[40] Takaya, K., "Dense stereo disparity map for video by sub-pixel dynamic time warp algorithm," Electrical and Computer Engineering
(CCECE), 2010 23rd Canadian Conference on , vol., no., pp.1,4, 2-5 May 2010, doi: 10.1109/CCECE.2010.5575257

[41] Lin, D.; Xiaohuang, H.; Quang, N.; Blackburn, J.; Rodrigues, C.; Huang, T.; Do, M. N.; Patel, S. J.; Hwu, W.-M.W., "The parallelization
of video processing," Signal Processing Magazine, IEEE , vol.26, no.6, pp.103,112, November 2009, doi: 10.1109/MSP.2009.934116

[42] Tkalcic, M.; Tasic, J. F., "Colour spaces: perceptual, historical and applicational background," EUROCON 2003. Computer as a Tool.
The IEEE Region 8, vol.1, no., pp.304, 308 vol.1, 22-24 Sept. 2003, doi: 10.1109/EURCON.2003.1248032

[43] Docampo, J.; Ramos, S.; Taboada, G. L.; Exposito, R. R.; Tourino, J.; Doallo, R., "Evaluation of Java for General Purpose GPU
Computing," Advanced Information Networking and Applications Workshops (WAINA), 2013 27th International Conference on , vol.,
no., pp.1398,1404, 25-28 March 2013. DOI= 10.1109/WAINA.2013.234

[44] Kolmogorov, V.; Zabih, R., "Computing visual correspondence with occlusions using graph cuts," Computer Vision, 2001. ICCV 2001.
Proceedings. Eighth IEEE International Conference on, vol.2, no., pp.508, 515 vol.2, 2001, doi: 10.1109/ICCV.2001.937668

[45] Miled, W.; Pesquet, J. C., "Disparity Map Estimation Using A Total Variation Bound," Computer and Robot Vision, 2006. The 3rd
Canadian Conference on, vol., no., pp.48, 48, 07-09 June 2006, doi: 10.1109/CRV.2006.28

[46] Scharstein, D.; Szeliski, R.; Zabih, R., "A taxonomy and evaluation of dense two-frame stereo correspondence algorithms," Stereo and
Multi-Baseline Vision, 2001. (SMBV 2001). Proceedings. IEEE Workshop on, vol., no., pp.131, 140, 2001, doi:
10.1109/SMBV.2001.988771

[47] Ashutosh, S.; Jamie, S.; Andrew, Y. Ng., “Depth estimation using monocular and stereo cues,” In Proceedings of the 20th international
joint conference on Artifical intelligence (IJCAI'07), 2007. Rajeev Sangal, Harish Mehta, and R. K. Bagga (Eds.). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2197-2203

Research Publications (Accepted and Communicated)

Conference Publications

1. Subhayan Mukherjee, Ram Mohana Reddy Guddeti, “A Hybrid Algorithm for Disparity Calculation From

Sparse Disparity Estimates Based on Stereo Vision” –IISc Bangalore, India, IEEE; 10th International

Conference on Signal Processing and Communications (SPCOM 2014), Jul 22–25, 2014.

2. Subhayan Mukherjee, Ram Mohana Reddy Guddeti, “A Novel Segmentation-Based Algorithm for Stereo

Depth Extraction using Sparse Disparity Estimates” –Beijing Jiaotong University, China, IEEE; 12th

International Conference on Signal Processing (ICSP 2014), Oct 19–23, 2014.

3. Subhayan Mukherjee, Ram Mohana Reddy Guddeti, “A Novel Entropy-based Approach for Stereo Matching

Error Detection” – Indian Institute of Technology Bombay, 21st IEEE National Conference on

Communications (NCC 2015), Feb 27–Mar 1, 2015 (under review).

Journal Publications

1. Subhayan Mukherjee and Ram Mohana Reddy Guddeti, “Depth-Based Selective Blurring in Stereo Images

Using Accelerated Framework”, Springer-Verlag Journal “3D Research”, Volume 5, Issue 3, Published

Online: 25 June 2014, DOI: 10.1007/s13319-014-0014-7.

2. Subhayan Mukherjee, Ram Mohana Reddy Guddeti, “A Novel Entropy-based Approach for Detecting Errors

in Dense Stereo Disparity Estimation” – IEEE Transactions on Circuits and Systems for Video Technology

(undergoing major revision).

3DR EXPRESS

Depth-Based Selective Blurring in Stereo Images Using
Accelerated Framework

Subhayan Mukherjee • Ram Mohana

Reddy Guddeti

Received: 13 March 2014 / Revised: 19 May 2014 / Accepted: 21 May 2014

� 3D Research Center, Kwangwoon University and Springer-Verlag Berlin Heidelberg 2014

Abstract We propose a hybrid method for stereo

disparity estimation by combining block and region-

based stereo matching approaches. It generates dense

depth maps from disparity measurements of only 18 %

image pixels (left or right). The methodology involves

segmenting pixel lightness values using fast K-Means

implementation, refining segment boundaries using

morphological filtering and connected components

analysis; then determining boundaries’ disparities

using sum of absolute differences (SAD) cost func-

tion. Complete disparity maps are reconstructed from

boundaries’ disparities. We consider an application of

our method for depth-based selective blurring of non-

interest regions of stereo images, using Gaussian blur

to de-focus users’ non-interest regions. Experiments

on Middlebury dataset demonstrate that our method

outperforms traditional disparity estimation

approaches using SAD and normalized cross correla-

tion by up to 33.6 % and some recent methods by up to

6.1 %. Further, our method is highly parallelizable

using CPU–GPU framework based on Java Thread

Pool and APARAPI with speed-up of 5.8 for 250

stereo video frames (4,096 9 2,304).

Keywords Stereo depth estimation � Sparse

disparity estimates � Java Thread Pool � APARAPI �
Morphological filter � Connected components analysis

1 Introduction

Stereo vision based disparity calculation is an impor-

tant research problem in computer vision with appli-

cations such as robotic vision, 3D scene

reconstruction, object detection and tracking etc. [1].

Here, the main challenge is to obtain an accurate depth

information of a scene by comparing the pixels of left

and right images of that scene. It is challenging

because individual pixels contain only the colour and

spatial information and represent the low level image

features [2]. So, to effectively compare a stereo image

pair, we need to develop the framework to identify

appropriate high level features and thereby comparing

these features efficiently with reasonable accuracy and

speed.

Disparity of a pixel varies inversely as the

distance of a point in a scene (that the pixel

represents) from the 3D camera. A disparity or

depth map contains the mapping of each pixel of an

image to its corresponding disparity. A cost function

is used to quantify the similarity between pixels of

the left and right images of a stereo image pair.

Then, pixels’ disparities are estimated by relative

displacement of the corresponding matching coun-

terparts across the image pair.

S. Mukherjee (&) � R. M. R. Guddeti

National Institute of Technology Karnataka,

Surathkal, Mangalore, India

e-mail: subhayan001@gmail.com

R. M. R. Guddeti

e-mail: profgrmreddy@nitk.ac.in

123

3D Res (2014) 5:14

DOI 10.1007/s13319-014-0014-7

For finding the matching pixels between the stereo

image pair, we have two basic approaches: block-

based and region-based; the strengths and weaknesses

of these two basic approaches are summarized in

Table 1 [3]. The key challenge in block-based meth-

ods is the determination of an optimal block size, and

in region-based methods is the detection of gradually

changing disparities. In estimating the stereo dispar-

ities using block-based methods, small block sizes

produce sharp edges on the depth map but generates

errors in the homogeneous regions since only a very

limited local information is utilized. On the other

hand, large block sizes provide good performance in

homogeneous areas but yield very inaccurate disparity

measurements along objects’ edges. This is because,

pixels inside the same block may have varying

disparities. For region-based methods, apart from the

fact that they not only create a limited number of depth

levels but also require accurate results of segmenta-

tion, which makes them inherently computationally

intensive and time-consuming. This motivates us to

propose a novel hybrid method by combining these

block-based and region-based approaches and thereby

overcoming their individual limitations.

Another way to classify stereo depth estimation

approaches is sparse versus dense. In the sparse,

feature-based approaches to stereo, only a subset of

image pixels (i.e. vertical edge pixels) are matched,

with an aim to meet real time processing requirements.

However, sparse disparity maps may often contain

insufficient data points for supporting object segmen-

tation which is an important prerequisite to subsequent

understanding of the scene. On the other hand, dense

stereo matching can improve this bottom-up process-

ing chain significantly [4]. But, this dense stereo

matching may be computationally complex.

In this context, it is also helps to quote a few very

important observations about stereo depth estimation

approaches (in general) made by several authors, time

and again, including the very recent one by Tippetts

et al. [5], that ‘‘The number of pixels that each image

contains increases the number of computations

required to match it with any number of possible

matches, making the correspondence problem a com-

putationally complex one that severely limits the

speed at which one can obtain results. Most of the

time, accuracy and speed are pitted against each other,

making it more difficult to obtain both at the same

time. In any given instance of the stereo vision

problem, various questions arise; is one of these two

attributes more desirable? How can the trade-off

between the two be minimized? What options already

exist, and how do they compare to each other?’’

The authors opined that target applications should

drive the algorithm designers’ decision of striking a

balance between speed and accuracy. They also

observed that authors should not solely rely on

advances in hardware technology to bring about

radical increments in processing speeds of stereo

vision algorithms. Rather, they must actively engage

in improving algorithms to run faster.

Hence, throughout our algorithm design process,

we make an attempt to give due consideration to both

these factors mentioned, viz. accuracy and speed. As

an example, we make an attempt to combine the speed

of the sparse, feature-based approaches to stereo with

the accuracy of the dense stereo vision methods.

For achieving the above cited goals, we propose a

novel hybrid method of disparity estimation by

segmenting pixels’ lightness values by a fast histo-

gram-based K-Means implementation and subsequent

refinement of segment boundaries using morpholog-

ical filters and connected components analysis. We

provide additional motivations behind our design

choices in the Sect. 2

The core idea behind our proposed method is to use

a scalable, block-based approach to estimate the

disparities of only pixels lying on the refined segment

boundaries, and get reliable disparity estimates in less

Table 1 Comparison of Basic Depth Estimation Approaches

Block-based method Region-based method

Approach Depth estimation based

on information

contained in pixels

and their surroundings

Depth estimation based

on optimal value of

cost function for

entire image regions

of pixels with similar

disparities

Strength High resolution depth

maps

Sharp edges on depth

maps

Weakness Need to determine

optimal block sizes

for different images,

or even different

regions of same image

for creating accurate

depth maps

Unsuitable for finding

the disparities that are

gradually changing,

as all pixels

constituting even a

large region may

share a constant

disparity

14 Page 2 of 21 3D Res (2014) 5:14

123

number of computations. So, our method is scalable to

high resolution stereo image pairs. Then, the proposed

disparity map reconstruction method is used for

estimating the disparities of pixels lying inside

segment boundaries and the details are given in Sect.

3. Finally, we consider an application of our algorithm

for depth-based selective blurring of stereo images,

using a Gaussian kernel to blur image regions

corresponding to (supplied) depth range(s) of user’s

non-interest. Thus, proposed methodology for the

selective blurring phase is similar to that of [6]; but our

method is not at all concerned with the occlusion

handling, however the proposed scheme can handle

multiple, and discrete depth ranges of users’ interest.

Further, our method utilizes two-dimensional

intensity based segmentation of the left image whereas

Zhang et al. [3] used a one-dimensional colour-based

segmentation process of individual rows of pixels.

Similarly, our proposed method uses only ‘L’ values

of pixels, making the process simple and fast; on the

other hand the method of [2] is based on object-based

segmentation using colour, spatial and shape infor-

mation, which potentially add to the computational

time.

Lastly, we demonstrate how the running time of our

proposed algorithm can be reduced by running some of

its mutually independent operations in parallel on the

multiple cores of CPUs and GPUs. We also experiment

with combining the power of the CPU and the GPU to

achieve even higher degrees of parallelism.

Key contributions of the proposed work are as

follows:

• To the best of our knowledge, this is the first work

on a hybrid method for stereo depth estimation

using disparity information obtained by segmen-

tation of only lightness values of left image pixels,

unlike other methods using colour, texture and

shape characteristics.

• Further, to the best of our knowledge, this is the

first paper dealing with morphological filters and

connected component analysis to get sparse, but

accurate depth estimates for subsequent recon-

struction of dense depth maps.

• Lastly, to the best of our knowledge, this is the first

work which proposes an accelerated framework

for reducing the running time of a novel algorithm

for stereo depth estimation, using Java Thread Pool

(CPU) and APARAPI (GPU), and for further

combining them, in order to achieve even greater

parallelism.

The rest of this paper is organized as follows: Sect.

2 deals with Related Work; Sect. 3 explains our

Proposed Algorithm with both Sequential and Parallel

Time Complexity Analysis; Sect. 4 gives the Results

and Discussion; Finally, Sect. 5 concludes with future

directions.

2 Related Work

When categorizing stereo vision algorithms, one of the

most obvious divisions in current literature is that of

global versus local methods [5]. Local algorithms are

statistical methods usually based on correlation. Global

algorithms are based on explicit smoothness assump-

tions that are solved through various optimization

techniques. Computational complexity of majority

global algorithms makes them impractical for real-time

systems. For global methods, smoothness assumptions

are defined through an energy function and the

optimization techniques minimize this function. For

local methods, the correlation process involves finding

matching pixels in left and right images of a stereo pair

by aggregating costs [e.g. sum of absolute differences

(SAD), sum of squared differences (SSD), normalized

cross correlation (NCC)] within a region or block.

For several years, the most accurate disparity maps

were produced by global algorithms [5]. Currently,

eight of the ten most accurate stereo vision algorithms

ranked by Middlebury evaluation criterion are global

energy minimization algorithms. Recently, however,

many local algorithms have been developed that are

competitive with respect to accuracy. As mentioned,

there is always a trade-off between accuracy and speed

for stereo vision algorithms and these accurate local

algorithms are no exception.

This has motivated us to design our proposed local

algorithm which can strike a good balance between

accuracy of results and speed of computation.

Most existing stereo disparity algorithms use one of

the two types of measures of pixel similarity between

left and right image: pixel-to-pixel or window-based.

Pixel-to-pixel algorithms find the pixel similarity

measure solely on individual pixel values, e.g. abso-

lute difference (AD) or squared difference (SD). On

the other hand, window-based methods aggregate the

3D Res (2014) 5:14 Page 3 of 21 14

123

pixel matching cost over a support region around a

pixel of interest, e.g. sum of absolute differences

(SAD) or sum of squared differences (SSD) [4]. A

study on comparison of cost functions commonly used

in recent methods of stereo disparity determination [7]

has come to the conclusion that the performance of a

matching cost function depends on the stereo method

that uses it. The SAD similarity measure can be

computed efficiently by exploiting the fact that

neighbouring windows overlap. For neighbouring

windows with the same disparity, the overlapping

pixels will contain equal AD values. Therefore, a new

SAD can be computed out of an old one by subtracting

the values, which are only parts of the old window, and

adding the values, that are only parts of the new

window [4].

This advantage of the SAD method, coupled with

the fact that it yields better estimates than AD due to its

support region, motivated us to use it in our method.

The shape of the SAD window is often rectangular.

Fewer mismatches will occur with large windows,

especially on texture-less regions. However, it is well

known that large windows lead to erroneous disparity

estimates at the edges of objects [4]. To overcome

these limitations, several cost aggregation strategies

based on characteristics of matching windows have

been proposed in recent years. These can be classified

into cost aggregation based on rectangular windows-

based and unconstrained shapes-based strategies;

lastly, by assigning different and variable weights to

pixels falling in the neighbourhood of two points on

the reference and target images for which stereo

correspondence is being evaluated. Rectangular win-

dow-based methods can be further classified into

variable window-size or offset-based, multiple-win-

dows-based, and differential weights of window

points-based approaches [8].

The multiple window approach leads to better

estimates in non-occluded areas of the input stereo

image. However, it is far more expensive compared to

single window approach. Further, multiple window

approach increases the computation time by more than

50 % but with slight improvement in overall accuracy

[4]. So, we consider single window approach in

proposed depth estimation algorithm.

Moreover, in our proposed approach, we use SAD

to determine disparities of only points which lie on

segment boundaries, which often coincide with edges

of objects, where there is bound to be some amount of

variation in intensity. Hence, we choose fixed-size

square windows of size 9 9 9 pixels for our method.

To determine the best matching pixel for a given

pixel, the most obvious means involves selecting the

point in the other image within a certain disparity range

that has the best similarity value, and this has been used

in many stereo matching methods. This strategy is called

‘Winner Takes it All’ (WTA). However, a stereo

algorithm based only on WTA does not consider parts

of stereo images that are only visible in one of the two

images, called occlusions. It may be noted that our

proposed stereo depth estimation approach will not focus

on addressing occlusion handling as of now. Moreover,

image regions having little or repetitive texture yield

similar matching costs. In these areas, WTA is error-

prone as there isn’t a clear optimum correspondence [4].

The smoothness constraint for stereo states that

disparity does not change much on object surfaces.

This concept is often used to improve disparity

estimates. If a correct disparity has been found then

it can be used to constrain the range of possible

disparities of other points on the same surface [4]. We

incorporated this concept in the fill step of our depth

map reconstruction phase and thereby reducing wrong

estimates on areas with little or repetitive texture.

In scan-line optimization (SO) schemes, the

smoothness constraint for stereo is implemented as a

global cost function, which adds penalties to the

values in the disparity search interval of each stereo

point. Errors can then be suppressed by penalizing

large jumps in disparity between scan-line points. The

main drawback of SO is its sensitivity to noise [4].

Hence, we did not consider SO scheme.

In dynamic programming (DP) approaches, the

problem of finding the correct disparities on a scan line

is regarded as a search problem. The matching costs of

all points on a scan-line describe the disparity search

space. Finding the correct disparities is akin to finding

the path in this space which takes the shortest route

through the cost values. Special rules for how to

transverse the search space can be added in order to

handle occlusions [4].

An important step in a stereo algorithm is searching

for the disparities with the lowest SAD values. For a

particular point on the left image line, the possible

matches with points on the right image line constitute

its search space. Finding the correct match by finding

the match with the lowest SAD value is computation-

ally expensive, since the whole disparity interval has

14 Page 4 of 21 3D Res (2014) 5:14

123

to be searched [4]. Hence, some methods like SO and

DP try to restrict the search space for faster

computation.

The edges of nearby objects do have high disparity

jumps between foreground and background. If algo-

rithms such as SO and the DP approaches do not find

these jumps, then the wrong disparity is used to define

a constraint for a part of the search space. In the

disparity images this error is visible in terms of the

typical ‘‘streaking’’ error. These misses can be induced

if an object is near, or when image noise is present.

Algorithms such as SAD which only estimate disparity

per point do not have these types of limitations [4].

However, irrespective of the types of algorithms,

the scene geometry is known to have a clear influence

on the performance of stereo depth estimation. Spe-

cially, algorithms like DP which use search space

restrictions are more affected [4].

Hence, in our method, we do not impose any search

space restrictions while determining the disparities of

pixels lying on segment boundaries using SAD.

Segmentation has been employed in many recent

stereo matching algorithms which considered seg-

ments instead of pixels, as the processing elements.

But, their segmentation processes mostly dealt with

hierarchical approaches and also took into account

features of colour, size and shape while processing the

input stereo image pairs. Examples of these are object-

oriented segmentation methods based on bottom-up

region merging [2], colour-based Mean-shift segmen-

tation (refer to Table 2) and the use of K-Means

clustering to over-segment the reference image [9].

But in all these segmentation-based stereo depth

estimation approaches there is no attempt to use,

primarily segmentation results of pixel grey level

values to identify groups of pixels that could produce

reliable disparities when matched. We tried to explore

this possibility in our proposed work, thus not only

making it computationally efficient (compared to

time-consuming segmentation methods like Mean-

shift etc.), but also simplifying its entire depth

estimation process.

However, as we consider only grey level values of

image pixels for segmenting the reference image, and no

spatial or colour information whatsoever, we include two

steps to refine the segment boundaries, using morpho-

logical filtering as well as connected components

analysis. Since both of these are established techniques

for image processing, their efficient implementations are

readily available. Hence, our proposed method utilizes

the above mentioned techniques.

Morphological filters were used for partitioning a

low depth-of-field image into focused object of

interest and blurred background [10]; but, our pro-

posed method uses morphological filters for an

entirely different task altogether, viz. refining segment

boundaries whose disparities are determined later to

reconstruct the full disparity map of the scene based on

the segment boundaries’ depth estimates.

Connected components analysis based methods

have aided image segmentation for the purpose of text

detection [11–13], brain tissue analysis [14, 15] and

colour image segmentation using genetic algorithms

[16], whereas in our proposed work, we use connected

components analysis to refine the boundary map by

removing small, isolated connected components (arte-

facts) which may yield incorrect depth estimates. Our

approach may seem similar to [14], where the authors

first roughly distinguished the region of non-brain

tissue through connected component labelling, and

Table 2 Comparison of recent depth estimation methods

Work Advantages Limitations

Choi [17] Bi-directional consistency check of disparity blocks

can improve disparity estimates

Comparison with similar algorithms using a

standard dataset has not been done

Zhu and Yu [18] Self-adaptive block matching can increase the

efficiency of searching, and reduce errors in

matching and block-shape

Presence of noise in the original left or right images

can result in selection of incorrect size for block-

matching (8 9 8 or 16 9 16)

Wang and Zheng [19] Cooperative optimization can check or fix disparity

errors

Uses the time-consuming mean-shift algorithm for

segmentation

Lu and Du [20] Harris corner point extraction and feature-matching

yields better corresponding points than traditional

methods

Both left and right images are scanned for corner

extraction and matching in the initial steps,

making them time-consuming

3D Res (2014) 5:14 Page 5 of 21 14

123

then tried to refine those edges using the morpholog-

ical operations, dilation and erosion. However, a

slightly closer look at our method would reveal that we

perform the connected components analysis after

applying morphological filters and thus the ordering

of these two operations is entirely reversed.

Several depth estimation techniques [17–20] have

been developed in recent years to overcome the

limitations of two basic approaches of stereo disparity

estimation, viz. block-based and region-based. Their

key features are summarized in Table 2.

3 Proposed Algorithm

Our proposed algorithm obtains the depth map as per

its flowchart given in Fig. 1.

We explain the steps of the flowchart of our

proposed algorithm, shown in Fig. 1:

3.1 Colour Space Conversion

Human eyes are more sensitive to changes in bright-

ness than in colour. The ‘L’ component of the Lab

colour space closely matches the human perception of

lightness. Hence, by applying the pertinent transfor-

mations discussed in [21], we convert the left and right

images from RGB to the Lab colour space and retain

only the ‘L’ values of its pixels.

3.2 Segmentation

‘L’ values of the left image pixels are segmented using a

fast implementation of the K-Means clustering algo-

rithm. We build a histogram of the ‘L’ values and use that

histogram instead of the actual pixel values for cluster-

ing. Thus, the runtime of clustering is significantly

reduced, as we perform clustering on a small, fixed

number of bins comprising the histogram. Since there

exists a one-to-one correspondence between each pixel

and the bin to which it has been mapped, we can easily

identify the cluster to which the pixel has been assigned

as the cluster to which its bin has been assigned.

3.3 Segment Boundary Detection and Refinement

Segment boundary detection is achieved by compar-

ing the cluster assignment of each pixel with that of its

8-connected pixels (i.e. its Moore neighbourhood). If

any of them is found to differ, we mark the pixel as ‘1’

Fig. 1 Flowchart of our

proposed depth extraction

algorithm

14 Page 6 of 21 3D Res (2014) 5:14

123

(falling on a segment boundary), else as ‘0’ (not on a

segment boundary). So, this step creates the ‘‘bound-

ary map’’ after segmentation.

But this approach also falsely identifies many pixels

as belonging to segment boundaries due to limitations

imposed by clustering accuracy, as we segment the

image based on only the pixels’ lightness (L) values

and not on their colour components (a, b) or spatial

locations (x, y) in the image. So, we apply two

morphological filters to refine the boundary map by

removing such noisy pixels, in the following order:

Fill: Fills isolated interior pixels such as the centre

pixel in:

1 1 1

1 0 1

1 1 1

Remove: Removes interior pixels, i.e., sets a pixel

to ‘0’ if all its 4-connected neighbours are ‘1’, thus

leaving only the boundary pixels on.

Further, we use connected components analysis and

remove small artefacts in the boundary map due to

segmentation errors, by ordering connected components

present in the boundary map by the number of pixels

constituting each connected component to remove the

smallest connected components which contribute about

4 % of the total number of boundary pixels.

3.4 Disparity Measurement of Boundary Pixels

We assume that the left and right cameras are

calibrated and the left and right images share the

same image plane. So, the correspondence of each

pixel can only be in the horizontal direction. For e.g.,

the correspondent point of any pixel on the left image

can only appear on the same row of the right image.

We use the SAD [1] cost function to determine only

the disparities of boundary pixels, using the ‘L’ values

of the left and right image pixels. It should also be

noted here, that by ‘‘boundary’’ pixels, we are also

(implicitly) referring to the pixels of the left image that

map to the left and right borders of the disparity map.

3.5 Disparity Map Reconstruction

from Boundaries

Our disparity map reconstruction algorithm scans

through each row of the partially computed disparity

map and computes the remaining disparities based on

disparities that have already been calculated. It

operates in two stages:

3.5.1 Disparity Propagation (‘Fill’ Stage)

In the first stage, we scan the disparity map row-wise,

left to right—whenever we consecutively encounter

two boundary pixels with equal disparity values, we

‘fill’ the intermediate pixels with that disparity value.

This reflects our assumption that the pair of points in

consideration actually belong to the same object in the

original image. So, all their intermediate pixels also

belong to that same object, and hence, should have

similar disparity values. The process is explained

using the pseudo-code below; disp_map is the matrix

containing the disparities of boundary pixels and

disparity(cell) refers to the disparity value of a

boundary pixel of disp_map.

Algorithm 1 Disparity Propagation along Scan Lines

1: for each row of disp_map, starting from its top do

2: for each cell of this row, starting from its left do

3: if this cell is a pixel on a segment boundary, then

4: if disparity(cell) == disparity(previous boundary pixel), then

5: disparity of all intermediate pixels disparity(cell)

6: end

7: end

8: end

9: end

3D Res (2014) 5:14 Page 7 of 21 14

123

3.5.2 Estimation from Known Disparities (‘Peek’

Stage)

In the second stage, for all pixels whose dispar-

ities have not yet been determined, we estimate

their disparities by ‘peek’-ing at disparity values

of their two nearest pixels for which the dispar-

ities have been already determined. We search for

these two nearest pixels along the same column as

the pixel in question and the details are as

follows:

3.6 Depth-Based Selective Blurring

The depth map output by the aforementioned final step is

fed to the blur map generator, along with the depth ranges

of users’ interest and an overall blur level. It must be

noted here that, theuser is solely responsible for selecting

the properdepth range(s)which comprise region(s) of his

(her) interest in the scene. This is analogous to setting a

proper DOF while shooting a scene using a SLR camera.

Thus, the blur map, determining which pixels in the

image will be blurred, is fed to a depth-based blurring

module, which synthesises a new scene, where all depth

ranges of users’ non-interest are blurred using Gaussian

function hg(n1, n2) and Blurring kernel h(n1, n2) as

defined by Eqs. 1 and 2 respectively,

hgðn1; n2Þ ¼ e
�ðn2

1
þn2

2
Þ

2r2 ð1Þ

hðn1; n2Þ ¼
hgðn1; n2ÞP

n1

P

n2

hg

ð2Þ

where n1 and n2 are dimensions of the blurring kernel,

r2 is the variance for building the Gaussian kernel and

the overall blur level is determined by r.

Figure 2 shows the overall process of this depth-

based selective blurring.

3.7 Sequential Complexity Analysis

Here, we present the step-by-step time complexity

analysis of our proposed algorithm and thereby iden-

tifying computationally intensive steps and the degrees

of interdependency between the operations of each step.

Next, we convert steps eligible for data-parallelization

to data-parallel workloads in JTP and APARAPI.

Our first step involves colour space conversion, in

which we apply predefined transformations [21] to the

(R, G, B) triplet of each pixel in both the left and right

image to extract the ‘L’ values from them. Thus, the

time complexity of this step is O(c1N1) in which N1

represents the number of pixels of each image and c1 the

number of (constant) operations required to perform

Algorithm 2 Disparity Estimation from Known Disparities

1: for each row of disp_map, starting from its top do

2: for each cell of this row, starting from its left do

3: if disparity of this cell has not been already determined, then

4: disp_n {disparities of two nearest pixels on the same column}

5: disp_r statistical range of disp_n

6: if disp_r > disparity_threshold, then

7: disparity of this cell smaller of the two values in disp_n

8: else

9: disparity of this cell mean of the two values in disp_n

10: end

11: end

12: end

13:end

14 Page 8 of 21 3D Res (2014) 5:14

123

each transformation. Further, as transformation applied

to each pixel is independent of others, this step lends

itself to the most obvious data-parallelization.

In our next step, we perform K-Means clustering on

the ‘L’ values obtained in the previous step. We first

show the time-complexity derivation for the naı̈ve

K-Means implementation, and then go on to show how

our fast implementation has been able to reduce the

complexity. Let ‘tdist’ be the time to calculate the

distance between any two feature vectors on which we

are running the K-Means algorithm; then, each iteration

of K-Means has the complexity O(KN2tdist), where

K denotes the number of cluster centres and N2 the

number of feature vectors (‘L’ values, in our case). For

finding ‘tdist’, we need only one computational step,

that of finding the AD between two integers falling

within the range [0, 255] (the range of possible values

for ‘L’). More importantly, since we perform clustering

on the bins of the histogram of the left image, and there

can be a maximum of 256 bins (representing the range

[0, 255]), this drastically reduces the time complexity

compared to the naı̈ve implementation which would

have run each iteration on all N1 ‘L’ values (one value

for each of the N1 pixels of the left image).

The next three steps, namely, segment boundary

detection and refinement using morphological filters

‘fill’ and ‘remove’ are performed in number of

comparisons linear in the number of pixels of the left

image, i.e., N1. Hence, they have time complexities of

O(c2N1), O(c3N1) and O(c4N1) respectively with the

constant terms representing the (constant) number of

operations required for each step. It is also evident,

that since the operations for each step are independent

for each pixel, they are ideal candidates for data-

parallelization leading to accelerated processing.

The next step, viz. finding connected components

has three basic operations:

1. Search for the next unlabelled pixel, p.

2. Use a flood-fill algorithm to label all the pixels in

the connected component containing p.

3. Repeat steps 1 and 2 until all the pixels are

labelled.

It is clear that searching for new unlabelled pixels

until all image pixels have been labelled requires a

number of operations which is linear in the total

number of image pixels. Further, a recursive flood-fill

algorithm works as outlined below:

1. If the pixel we want to label is unlabelled, then

label it, else stop.

2. Reclusively flood-fill each unlabelled 8-con-

nected pixel of the above pixel.

Since there are ‘if’ clauses, flood-fill only considers

unlabelled pixels, which have a static number, say,

n. Therefore worst-case complexity becomes O(n).

For ordering Nc connected components based on their

constituent number of pixels, we can use merge-sort to

finish the operation in O(Nc log(Nc)) comparisons.

Next, to find the disparity of each boundary pixel

using the SAD cost function for a (constant) window

size ‘w’ and a (constant) maximum disparity ‘d’, we

require O(w2d) operations. Now, for Nb boundary

pixels, it becomes O(Nbw2d).

Lastly, both the ‘fill’ and ‘peek’ stages of the depth

map reconstruction phase of our algorithm are primarily

based on a (constant number of) computations on the

disparities of boundary pixels with time complexities of

O(Nb) each, and these can also be converted into data-

parallel workloads due to their independent nature.

Space complexity of our proposed algorithm can be

computed as follows: the pixels’ ‘L’ values and the

complete depth map need O(N1) memory; we also

need an auxiliary storage of O(Nb) size for holding the

intermediate results of segment boundary detection

and refinement and the disparities of pixels lying on

refined segment boundaries. For K-Means clustering,

an array of size O(256) is required for storing the count

of image pixels mapped to each histogram bin for the

present iteration (each histogram bin represents each

grey-intensity present in the image).

3.8 Parallel Implementation and Its Time

Complexity Analysis

We carry out parallelization of some of the compu-

tationally intensive steps of the proposed algorithm

whose constituent operations are mutually indepen-

dent. By executing these independent steps on multi-

ple cores of the CPU and GPU we can reduce the time

complexity. We use the Java Thread Pool (JTP) for

Fig. 2 Depth-based selective blurring

3D Res (2014) 5:14 Page 9 of 21 14

123

CPU-parallelization and APARAPI [22], an API

which allows suitable data parallel Java code to be

executed on GPU via OpenCL, for GPU-paralleliza-

tion. We also experiment with combining the two

methods to achieve even greater performance.

The independent execution units in Java Thread

Pool are the ‘‘worker threads’’ and in APARAPI are

the ‘‘kernels’’. Thus, we put the parts of our code

which we want to run in parallel in the respective

execution units. Moreover, combination of CPU and

GPU parallelization leads to sharing the workload

between them, so we have to decide on how many

execution units we want to run simultaneously on the

CPU and the GPU, so as to achieve optimal balancing

of workload between them.

Thus, assuming the availability of ‘p’ parallel

processing units, for four steps of our algorithm,

viz. colour space conversion and segment boundary

detection and refinement using the morphological

filters ‘fill’ and ‘remove’, each of them can be

completed in O(ciN1/p) time. Similarly, both the

‘fill’ and ‘peek’ steps of the depth map reconstruc-

tion phase can also be completed in O(Nb/p) time

each.

4 Results and Discussion

To compare the stereo disparity estimation perfor-

mance of our approach versus those of some other

(existing) algorithms, we initially ran our algorithm

on three pairs (left and right) of stereo images from

the Middlebury data-set, viz. Tsukuba, Sawtooth and

Venus and compared the generated depth maps with

corresponding ground truth depth maps provided in

the data-set. We also compared our depth maps with

those output by two established cost functions (SAD

and NCC) used in numerous traditional stereo

disparity estimation methods, and a recent method

[3] which uses the AD cost function, for those same

three stereo image pairs. We further compared our

error rates with two most competitive disparity

estimation techniques, viz. Graph-cut [23] and TV-

based [24]. Also, the Middlebury stereo evaluation

page maintains a table of performance statistics of

numerous state-of-the-art disparity estimation meth-

ods, submitted by authors, after running their algo-

rithms on four standard stereo pairs supplied as part

of the data-set (viz., Tsukuba, Venus, Teddy and

Cones) with constant parameters.1 It is obvious that

there is no way to check whether the authors actually

ran their algorithms with a constant set of parameter

values for all the four image pairs, and algorithms

may yield substantially different error rates for

different sets of parameter values. Nevertheless, we

consider this repository as an additional benchmark

for evaluating the performance of our proposed

algorithm.

We present the results of the said comparisons

below, along with the outputs of each step of our

proposed approach for the Tsukuba image pair (since

it presents a typical scene with adequate number of

disparity levels in its provided ground truth depth map

to mimic real-world depth-based blurring scenarios),

to demonstrate how our proposed depth estimation

algorithm works.

Characteristics of all Middlebury stereo image pairs

used for evaluation of our proposed algorithm and

comparison of our output depth maps, are presented in

Table 3. We used a set of parameter values and the

details are given in Table 4.

4.1 Explanation of Step-wise Outputs of Proposed

Method for ‘Tsukuba’ Image

4.1.1 Colour Space Conversion

Process Left and right input images are converted

from the RGB to the CIE-Lab color space following

the pixel value transformations outlined in [21].

Table 3 Characteristics of Middlebury stereo image pairs used for performance evaluations

Characteristics Tsukuba Sawtooth Venus Teddy Cones

Size (pixels) 384 9 288 434 9 380 434 9 383 450 9 375 450 9 375

Disparity Levels 16 20 20 60 60

1 http://vision.middlebury.edu/stereo/submit/.

14 Page 10 of 21 3D Res (2014) 5:14

123

Results Each pixel of both images has an L value for

its lightness component. Figure 3 (left) shows the

converted left input image.

Observations The output image shows the lightness

value of each pixel.

4.1.2 Segmentation

Process Converted left input image image is fed to the

fast implementation of K-Means clustering algorithm

as discussed earlier.

Results The result is shown in Fig. 3 (right).

Observations Small variations in ‘L’ values (noise)

have been absorbed into single coherent segments

representing image regions of pixels belonging to the

same object, with similar values of disparity. How-

ever, since we have segmented the left image based on

just the pixels’ ‘L’ values, ignoring their spatial

locations (to expedite the clustering process), we must

refine the boundaries of objects defined by the clusters

above, so that the spatial distribution of the ‘L’ values

are also taken into account.

4.1.3 Segment Boundary Detection and Refinement

Process We detect and refine the segment boundaries

using the approach described in the previous section.

Results The outputs are shown in Fig. 4, with

output of segment boundary point detection, followed

by that of morphological filtering, and lastly, output of

connected components analysis at the bottom.

Observations We can infer from Fig. 4b, how the

redundancies in segment boundary detection have

been removed from Fig. 4a, and from Fig. 4c, how the

small artefacts in Fig. 4b have been removed by the

connected components analysis technique.

For the Tsukuba image pair, the segment boundary

refinement reduces the number of boundary pixels by

nearly 53 % for the parameter values of Table 4, such

that only 19 % of the left image pixels are used for

disparity calculations. This greatly reduces the number

of disparity computations in the next step.

4.1.4 Disparity Measurement of Boundary Pixels

Process Disparities of the boundary pixels are deter-

mined by using the SAD algorithm.

Results The result in shown in Fig. 5 (left).

Observations Boundaries of objects closer to the

camera (like the lamp and the head of the statue) are

having a higher intensity (greater value of stereo

disparity). This is in direct agreement with the reality

that value of disparity of a pixel is inversely proportional

to its distance (from the camera lens/human eyes).

4.1.5 Disparity Map Reconstruction from Boundaries

Process Disparities of the segmented regions in the

image are determined from the disparities of their

boundaries using the two-stage disparity map recon-

struction method discussed earlier.

Table 4 Parameter values for

the three image pairs
Parameter Tsukuba Sawtooth Venus

Number of clusters (K) for K-Means 10 10 10

Block size for cost aggregation (odd) 9 9 9 pixels 9 9 9 pixels 9 9 9 pixels

Disparity threshold for reconstruction 0 1 1

Fig. 3 Segmentation of ‘L’

values of left image using

K-Means

3D Res (2014) 5:14 Page 11 of 21 14

123

Results The results are shown in Fig. 5 (right).

Observations The depth map shows the mapping of

each image point to a certain level of disparity. Objects

which are closer to the camera like the lamp-shade

have a greater disparity value resulting in a brighter

shade of gray. For objects further away from the

camera like the table, the shades of gray get progres-

sively darker, as their disparity values keep on

decreasing.

To evaluate the disparity estimation of our approach

vis-a-vis those of existing algorithms, we initially chose

three pairs (left and right) of stereo images from the

Middlebury stereo vision data-set, viz. Tsukuba, Saw-

tooth and Venus. We ran our algorithm on those three

image pairs. We then compared the depth maps

obtained by our algorithm against the corresponding

ground truth depth maps provided in the data-set, as

well as with the depth maps created by two established

methods (SAD and NCC [1]) and a recent work by

Zhang et al. [3] for those same three image pairs. We

present the results of those comparisons below.

4.2 Qualitative and Quantitative Comparison

with Ground Truth Depth Maps

To evaluate the depth estimates of our proposed

method, we consider the approach of computing error

statistics with respect to the ground truth image

available with the Middlebury dataset, and we choose

the quality metric as the percentage of bad matching

pixels (B) given by Eq. 3,

B ¼ 1

N

X

ðx;yÞ
ðjdCðx; yÞ � dTðx; yÞj[ddÞ ð3Þ

where dC(x, y) are the computed disparities and dT(x,

y) are ground truth disparities, and dd denotes the

disparity error tolerance, which is taken as ‘1.0’ as per

published works [25].

Table 4 shows the values of our algorithm’s

parameters which gave best results are hence, were

used for performance comparison. From the table, it’s

evident that the set of optimal parameter values is

almost constant across all three images. We have

observed in our experiments that slight variations of

the parameter values about the optimal ones effect

negligible changes in accuracy of depth estimation.

Thus, our method is robust to changes in parameter

values, like the one in [19].

Figure 6 presents a comparison of the depth map

produced by our method (left) with ground truth depth

map (right) for the Tsukuba image. The black regions

Fig. 4 Segment boundary detection and refinement

14 Page 12 of 21 3D Res (2014) 5:14

123

in depth maps are those whose disparities are not

compared. Further, the percentage of bad matching

pixels (including occluded image regions) was found

to be 7.8 %.

It can be seen from the comparison of our depth

map with the ground truth that our algorithm yields

fairly accurate depth estimation; its performance is

affected mostly in some texture-less and low illumi-

nation regions. But as we will be using the generated

depth maps for the purpose of selective blurring,

inaccurate depth estimates in regions of low texture

and illumination will not affect the blurring perfor-

mance, as human eyes are more sensitive to variations

in brightness than colour, and hence perceptual

differences resulting from blurring a dark region

would be negligible. Likewise, as blurring is per-

formed using a weighted average of neighbouring

pixel values, a region of low texture will remain

relatively unaffected after a blurring operation, as the

variation in pixel values in a texture-less region is

negligible. Some incorrect depth estimations also

occur in occluded regions which can be reduced using

occlusion handling techniques in future. Also, our

algorithm does not calculate depth information of

pixels lying near the image borders (which we will

address in our future work), but this limitation does not

significantly affect the output of depth-based blurring,

as the images’ borders very rarely contain objects or

regions of interest to the user.

4.3 Qualitative and Quantitative Comparison

with Stereo Matching Methods

Table 5 shows the results of performance comparison of

our depth estimation method with two established

methods, viz. Sum of absolute differences (SAD) and

normalized cross-correlation (NCC) (both of which

have been used as cost functions in numerous traditional

algorithms for stereo depth estimation), as well as a

recent work by Zhang et al. [3] which uses AD cost

function to predict disparities. Again, we use the

percentage of bad matching pixels to quantitatively

compare depth maps generated by our method, SAD,

NCC and Zhang et al. [3]. We also separately evaluate

the accuracy of depth maps generated by our algorithm

by considering the corresponding Middlebury ground

truth depth maps, by both including and excluding the

occluded regions of the input images, as algorithms like

ours and Zhang et al. [3] often do not deal with occlusion

handling explicitly. In this context, it should also be

Fig. 5 Disparity map

reconstruction from

boundary disparities

Fig. 6 Resultant depth

map compared to

Middlebury’s ground truth

3D Res (2014) 5:14 Page 13 of 21 14

123

noted that, in the work by Zhang et al. [3], the authors

have not specifically mentioned clearly whether they

have evaluated their algorithm only on non-occluded

image regions, or on occluded image regions as well.

The results clearly demonstrate that our proposed

method outperforms traditional NCC and SAD methods

by up to 33.6 %, and even a recent method of Zhang

et al. [3] by up to 6.1 % (including occluded regions of

input images).

Further, the percentage of left image pixels used for

stereo depth estimation was about 19 % for Tsukuba,

18 % for Sawtooth and 16 % for Venus image pairs,

implying that our algorithm is scalable to high resolution

stereo images.

Figures 7 and 8 show depth maps generated by our

method (left) and ground truth depths (right) for the

Sawtooth and Venus images. Their quantitative com-

parison results are shown above, in Table 5. All other

depth maps supporting performance comparison data

presented in Table 5 can be found in [3].

We next compared our proposed method with two

most competitive depth estimation techniques, viz.

Graph-cut [23] and TV-based [24], and the results are

shown in Table 6 and 7 respectively. We used the same

quality metric, viz., ‘‘Percentage of bad matching

pixels’’, (with the value of dd denoting the disparity

error tolerance, taken as ‘1.0’) to quantitatively compare

depth maps generated by our method and the Graph-cut

based method [23]. To compare our results with the TV-

based method [24], we used another quality metric, viz.,

‘Average Absolute Disparity Error’ (AADE) used by

the authors of the TV-based method [24].

Analysis of results presented in Table 6 and 7

shows that, in cases where the most competitive recent

methods like Graph-cut [23] are able to successfully

address the issue of occlusions in the input image (by

adopting an expansion-moves approach over swap-

moves approach), our method has a definite scope of

improvement, since we have not considered occlu-

sions as of now. But, using the swap-moves approach,

where the Graph-cut based method failed to properly

handle occlusions in the input image, our algorithm

performed significantly better. Also, it must be noted

that handling occlusions in input images entails a

higher computational complexity, as evident from the

authors’ run-time calculation [23].

On the other hand, TV-based methods like [24] give

better disparity estimates by iteratively refining left-

to-right and right-to-left initial disparity maps

(obtained using a correlation-based method). The

results are shown in Table 7 where, using similar

evaluation methodology as authors [24], we have

quantitatively compared the performance of our

algorithm in three different types of areas in the

image, classified as un-textured (Buntex), discontinu-

ous (Bdisc) and the entire image (Ball), for only non-

occluded pixels in all three cases. Understandably, our

Table 5 Performance comparison of proposed algorithm

Tsukuba

(%)

Sawtooth

(%)

Venus

(%)

NCC [1] 41.4 9.92 17.4

SAD [1] 36.9 11.9 24.5

Zhang et al. [3] 13.9 7.22 6.12

Proposed algorithm

(including occluded

regions)

7.8 5.26 4.72

Proposed algorithm

(excluding occluded

regions)

6.1 3.29 3.78

Fig. 7 Sawtooth depth

map for proposed algorithm

(left) and Middlebury’s

ground truth (right)

14 Page 14 of 21 3D Res (2014) 5:14

123

method yields comparatively greater error rates, as we

do not have any initial disparity maps to start with, as

we build it from scratch.

For our final set of comparisons w.r.t our algorithm’s

error-rate, we focus once more on the Tsukuba image

pair (as it represents a scene which can be a typical

candidate for many real-world depth-based blurring

scenarios). We use the Stereo Evaluation table2 of the

Middlebury website to compare our algorithm’s error-

rate against those of numerous others, based on their

output depth maps submitted to the table by their

corresponding authors, and evaluation done by the

website itself. We used a set (fixed) of parameter values

Number of K-Means’ Clusters (K) = 10, Block Size

for Cost Aggregation = 9 9 9 pixels, and Disparity

Threshold = 1.0 for all four standard data-set stereo

image pairs required for evaluation (Tsukuba, Venus,

Teddy and Cones). Then, we submitted our generated

depth maps through the Middlebury website’s online

submission form for evaluation and comparison against

their repository of results of several existing state-of-

the-art algorithms.

The comparison results are shown in Fig. 9, with

our method labelled ‘‘YOUR METHOD’’ as per the

Stereo Evaluation Table (see footnote 2) of the

Middlebury website. The original table has more than

150 entries and cannot fit within the space constraints

of this paper, so we chose to truncate the table from the

7th entry onward, till the 5th entry before the one

corresponding to our method. The reason for this is, as

the table entries are sorted by increasing order of error-

rate for the Tsukuba image pair, by truncating the table

in the said fashion, one can see some of the best

performing methods, followed by few methods which

perform slightly better than our method, followed my

results of our method, and lastly, those of all the 38

methods which perform worse than ours. The disparity

error tolerance, dd has been taken to be the most

stringent permissible, viz. ‘0.5’, which translates to

finding (the complement of) the percentage of exactly

matching pixel disparities in case methods like ours,

which do not compute sub-pixel disparities.

From an analysis of the results presented in Fig. 9,

one can conclude that our method performs better for

‘nonocc’ (non-occluded) and ‘all’ input image

regions, but does not produce up-to-the-mark results

Fig. 8 Venus depth map

for proposed algorithm (left)

and Middlebury’s ground

truth (right)

Table 6 Performance comparison of proposed algorithm with

graph-cut method

Algorithm execution on non-occluded

image regions

Tsukuba

(%)

Proposed method without occlusion handling 6.1

Kolmogorov’s graph-cut method (using expansion-

moves)

1.9

Kolmogorov’s graph-cut method (using swap-

moves)

13.6

Table 7 Performance comparison of proposed algorithm with

TV-based method

Tsukuba Sawtooth Venus

Ball Buntex

Bdisc

Ball Buntex

Bdisc

Ball Buntex

Bdisc

Proposed

method

0.56, 0.70, 1.30 0.44, 0.42, 1.58 0.49, 0.59, 1.28

TV-based

method

0.29, 0.24, 0.51 0.23, 0.19, 0.41 0.24, 0.26, 0.39

2 http://vision.middlebury.edu/stereo/eval/.

3D Res (2014) 5:14 Page 15 of 21 14

123

Fig. 9 Truncated Middlebury stereo evaluation table comparing our method versus state-of-the-art

14 Page 16 of 21 3D Res (2014) 5:14

123

for the ‘disc’ regions (which denote regions of

disparity discontinuities) for all the four (input) test

image pairs. Since many ‘disc’ regions coincide with

object boundaries, hence improvement of depth esti-

mation performance in these types of image regions

can directly translate to an improved overall depth-

based blurring performance and so needs to be

addressed as part of future work. Moreover, the

error-rate for our outputs is much higher for the

‘Teddy’ and ‘Cones’ pairs (whose ground truth depth

maps have 60 disparity levels each) than the ‘Tsukuba’

and ‘Venus’ pairs (whose respective ground truth

depth maps have 16 and 20 disparity levels). Hence,

there exists a definite scope of betterment of our

method for scenarios requiring large number of depth

levels.

4.4 Comparison with State-of-the-Art Algorithms

w.r.t Serial Execution Time

To compare the running time of our algorithm with

those of state-of-the-art stereo disparity estimation

algorithms, we partly adopted the approach described

in a very recent work by Tippetts et al. [5]. In their

work, authors reviewed numerous published stereo

vision algorithms, and evaluated their run-time per-

formance. Their evaluation metric is ‘millions of

disparity evaluations per second’ (Mde/s), which is

calculated from the time to compute the disparity map

by an algorithm for one frame, t, is given by Eq. 4,

where W is the width and H, the height of the input

image, and D, the number of disparity levels. Since

the authors evaluated many of the reviewed algo-

rithms on images of different sizes, it yielded different

runtimes. So, values of execution time they reported,

include the highest performance each algorithm

achieved, along with the corresponding image size.

Mde/s =
W � H � D

t
� 1

1;000;000
ð4Þ

The authors observed that multiple factors can

influence runtime measurements of stereo vision algo-

rithms, such as, the computational power of a CPU on

which it is executed, programming language in which it

is implemented, skill and effort of programmers in

optimizing the implementation, parallelization tech-

niques used, etc. Also, it is often necessary to make such

a comparison when deciding which algorithm to imple-

ment for a given application. Thus, they included all

published runtimes achieved by the stereo vision algo-

rithms they reviewed, as well as all available hardware

details to let the reader make such comparisons.

The authors also discouraged the practice of scaling

runtime measurements directly by a processor clock

speed, as it ignores other factors, such as processor

pipelining, cache design, memory subsystem etc. while

comparing running times of two or more algorithms

implemented and executed on processors with widely

varying configurations and clock speeds. Instead, they

collected processor bench-mark values for each of the

specific CPUs on which their reviewed methods were

executed from the PassMark Software CPU benchmark

table.3 Using these values of CPU benchmarks, they

calculated a normalizing factor for each of those CPUs,

which were later used to scale the run-times of all the

depth estimation algorithms running on those CPUs. In

their performance comparison tables and graphs, they

provided both un-normalized and normalized run-times

of their surveyed methods to aid the process of

comparison. However, they have not mentioned the

particular formula or method using which the normal-

izing factor was calculated. Further, the processor on

which we executed the implementation of our proposed

stereo depth estimation method is having a different

configuration and clock speed compared to the CPUs

mentioned in their work. Hence, we report the un-

normalized run-times of our method, along with our

CPU configuration specifications and details of the

corresponding input stereo pairs, in terms of width,

height, and number of disparity levels of the test

images, to let the reader make appropriate comparisons.

Table 8 shows results of comparison of running

time of the implementation of our algorithm in

MATLAB version 2013b in terms of Mde/s against

some of the best performing methods which the

authors surveyed and presented in their work [5]. In

Table 8, we have grouped our results according to the

input stereo image pair. We have sorted the entries

within each such group on the decreasing order of

Mde/s, following a similar approach of Tippetts et al.

[5]. The last two entries of Table 8 are for a True-HD

resolution stereo image pair comprising a stereo

frame, which we processed using proposed algorithm

and the results show its scalability.

3 http://www.cpubenchmark.net/cpu_list.php.

3D Res (2014) 5:14 Page 17 of 21 14

123

While interpreting the computation time perfor-

mance of our algorithm vis-à-vis those of other state-

of-the-art algorithms presented in Table 8, we should

not forget, that our method’s entire implementation is

in MATLAB, which is, largely, an interpreted

language. Thus, it may often run comparatively

slower than the C/C??/OpenCV implementations of

other methods surveyed by the authors [5].

4.5 Results of Depth-Based Blurring

for ‘Tsukuba’ and Real-World Stereo Pairs

Figure 10 shows our GUI, which lets users visualize the

entire range of depth levels present in the depth map

output by our method. From this GUI, the user can pick

depth range(s) as per his (her) choice of region(s) or

object(s) of interest, which he (she) wants to keep in

focus. Accordingly, the blur map will be generated.

Next, we present the results of depth-based blurring

on the Tsukuba image using depth maps output by our

proposed algorithm, in Fig. 11. In the top-right image,

only the lamp, and in the bottom-left one, only the

statue-head and the table are in focus, as per input

depths ranges of interest. Multiple in-focus depth

ranges, like the bottom-right image extend the meth-

ods like [6]. It is interesting to note that the incorrect

depth estimates of our algorithm in the texture-less and

low illumination regions do not (noticeably) affect the

depth-based blurring.

We also present the results of depth-based blurring

on a real-world scene which we captured using our

Sony HDR-TD104 3D camcorder and later processed

using our proposed method, in Fig. 12. The input stereo

image pair was extracted from the frames of a short 3D

(stereo) video clip shot using the said 3D camcorder,

and only the left frame is shown in Fig. 12. It is

interesting to note that even though no stereo rectifi-

cation algorithm was applied to the extracted stereo

image pair prior to its processing with our method, yet

our output shows very few inconsistencies.

4.6 Results of Parallelization of Proposed

Algorithm Using JTP and APARAPI

Lastly, we present results of parallelization of the

computationally intensive, yet parallelizable steps of

our depth extraction algorithm using CPU (Java

Table 8 Comparison of proposed algorithm with state-of-the-art w.r.t computation time

Method Run-time (seconds) Input stereo image pair width 9 height (disparities) Mde/s Hardware

Proposed 1.07 450 9 375 (60) 9.4626 Core i7-2600 3.40 GHz

za [5] 1.6 450 9 375 (60) 6.3281 P4 3.0 GHz

we [5] 2.57 450 9 375 (60) 3.9382 Core 2 Duo 2.66 GHz

Proposed 0.84 434 9 383 (20) 3.9342 Core i7-2600 3.40 GHz

sd [5] 1.7 434 9 383 (20) 1.9556 N/A

sc [5] 1.79 434 9 383 (20) 1.8572 N/A

gp [5] 0.46 384 9 288 (16) 3.8467 Core 2 Duo 2.80 GHz

Proposed 0.57 384 9 288 (16) 3.1043 Core i7-2600 3.40 GHz

cg [5] 0.81 384 9 288 (16) 2.1845 P4 2.8 GHz

Proposed 12.985 1920 9 1,080 (60) 9.5815 Core i7-2600 3.40 GHz

Proposed 10.188 1,920 9 1,080 (16) 3.2565 Core i7-2600 3.40 GHz

Fig. 10 GUI showing depth levels present in disparity map

generated by proposed method

4 http://store.sony.com/gsi/webstore/WFS/SNYNA-SNYUS-

Site/en_US/-/USD/ViewProduct-Start?SKU=27-HDRTD10.

14 Page 18 of 21 3D Res (2014) 5:14

123

Thread Pool) and GPU (APARAPI) separately, and

then by combining them, in Table 9. The experiments

were performed on a PC having an Intel i7-2600 quad-

core @ 3.40 GHz CPU with 4 GB RAM and NVIDIA

NVS 300 GPU having two compute units and 512 MB

RAM. In the ‘‘combined’’ implementation, we invoked

four JTP worker threads and two APARAPI kernels

simultaneously, as it gave best results.

Fig. 12 Original image

(left) and depth-based

blurring with single depth

range in focus (right)

Fig. 11 Original image

(a), depth-based blurring

with single depth range in

focus (b, c) and depth-based

blurring with multiple depth

ranges in focus (d)

Table 9 Results of parallelization of proposed algorithm

No. of images Serial time (ms) JTP-only time (ms) APARAPI-only time (ms) JTP ? APRARAPI time (ms)

150 73,191 32,396 17,331 13,822

200 96,361 42,391 22,982 16,595

250 116,909 47,070 28,514 20,192

Table 10 Speed-ups Achieved by Parallelization of Proposed

algorithm

No. of

images

JTP-

only

APARAPI-

only

JTP ? APRARAPI

150 2.3 4.2 5.3

200 2.3 4.2 5.8

250 2.5 4.1 5.8

3D Res (2014) 5:14 Page 19 of 21 14

123

The increase in processing speed obtained by

parallelizing serial algorithms and running on CPUs/

GPUs is quantitatively described by a metric called

speed-up factor as shown in Eq. 5:

Speedup ¼ Serial Execution Time

Parallel Execution Time
ð5Þ

Speed-ups achieved over serial implementation by

parallelizing our proposed algorithm and executing the

serial and parallel versions on the CPU and GPU with

an input stereo image sequence of 4,096 9 2,304

pixels each are given in Table 10. The maximum

speed-up obtained is 5.8 for a sequence of 250 stereo

images, for the CPU ? GPU (combined) paralleliza-

tion approach. We observed that, generally with the

increase in the number of multi-processing units

(cores) and the increase in the speed of each processing

unit, the parallel executions become quicker and hence

the speed-up increases following a sub-linear trend. It

is not perfectly linear due to many causes, the most

significant of which is a factor called parallelization

overhead, which deals with coordinating activities of

different processing units to collectively achieve a

single task, like the distribution of total workload

among all parallel processing units, collecting the

intermediate processing results from each unit and

compiling them to form the output.

From the graph of Fig. 13, we can easily infer that,

rate of increase of running time of our proposed

algorithm is greatest for the serial implementation,

followed successively by the JTP, APARAPI and the

JTP ? APRARAPI (combined) ones, in decreasing

order. This is because GPUs are more suitable for

running data-parallel workloads than CPUs, and the

combined approach utilizes both for parallelization.

5 Conclusion and Future Work

In this paper, we proposed a stereo depth estimation

method using only 18 % pixels of either the left or

the right image, which outperforms traditional

methods like SAD and NCC by up to 33.6 % and

a recent method developed by Zhang et al. [3] by up

to 6.1 %. We also performed depth-based Gaussian

blurring of image regions as per depths of users’

non-interest. We showed that despite our algorithm’s

inaccurate depth estimates in texture-less and low-

illumination regions, its blurring performance is not

affected. Future work will focus on improving the

depth estimates and the depth-map reconstruction

technique.

References

1. Lazaros, N., Sirakoulis, G., & Gasteratos, A. (2008).

Review of stereo vision algorithms: from software to

hardware. International Journal of Optomechatronics, 2(4),

435–462.

2. Xiao, J. Xia, L., Lin, L., & Zhang, Z. (2010). A segment-based

stereo matching method with ground control points. Interna-

tional Conference on Environmental Science and Information

Application Technology (ESIAT), 2010 (Vol. 3, pp. 306–309).

17–18 July 2010. doi: 10.1109/ESIAT.2010.5568363.

3. Zhang, Z., Wang, Y., & Dahnoun, N. (2010). A novel

algorithm for disparity calculation based on stereo vision.

Fig. 13 Results of

parallelization of proposed

algorithm

14 Page 20 of 21 3D Res (2014) 5:14

123

4th European Education and Research Conference (ED-

ERC), 2010 (pp. 180–184). 1–2 Dec 2010.

4. Sunyoto, H., Van der Mark, W., & Gavrila, D. M. (2004) A

comparative study of fast dense stereo vision algorithms.

IEEE Intelligent Vehicles Symposium, 2004 (pp. 319–324).

14–17 June 2004. doi: 10.1109/IVS.2004.1336402.

5. Tippetts, B., Lee, D., Lillywhite, K., & Archibald, J. (2013).

Review of stereo vision algorithms and their suitability for

resource-limited systems. Journal of Real-Time Image

Processing 1–21. doi:10.1007/s11554-012-0313-2.

6. Popkin, T., Cavallaro, A. & Hands, D. (2011). Efficient

depth blurring with occlusion handling. 18th IEEE Inter-

national Conference on Image Processing (ICIP), 2011 (pp.

2585–2588). 11–14 Sept 2011. doi: 10.1109/ICIP.2011.

6116193.

7. Hirschmuller, H. & Scharstein, D. (2007). Evaluation of cost

functions for stereo matching. IEEE Conference on Com-

puter Vision and Pattern Recognition, 2007. CVPR ‘07. (pp.

1–8) 17–22 June 2007. doi: 10.1109/CVPR.2007.383248.

8. Tombari, F., Mattoccia, S., Di Stefano, L., & Addimanda, E.

(2008). Classification and evaluation of cost aggregation

methods for stereo correspondence. IEEE Conference on

Computer Vision and Pattern Recognition, 2008. CVPR

2008 (pp. 1–8). 23–28 June 2008. doi: 10.1109/CVPR.2008.

4587677.

9. Abdollahifard, M., Faez, K., & Pourfard, M. (2009). Fast stereo

matching using two stage color-based segmentation and

dynamic programming. 6th International Symposium on

Mechatronics and its Applications, 2009. ISMA ‘09 (pp. 1–6)

.23–26 March 2009. doi: 10.1109/ISMA.2009.5164848.

10. Kim, C. (2005). Segmenting a low-depth-of-field image

using morphological filters and region merging. IEEE

Transactions on Image Processing, 14(10), 1503–1511.

doi:10.1109/TIP.2005.846030.

11. Wang, X., Song, Y., & Zhang, Y. (2013). Natural Scene

Text Detection with Multi-channel Connected Component

Segmentation. 12th International Conference on Document

Analysis and Recognition (ICDAR), 2013 (pp. 1375–1379).

25–28 Aug 2013. doi: 10.1109/ICDAR.2013.278.

12. Vishwanath, N., Somasundaram, S., Ravi, M. R. R., &

Nallaperumal, N. K. (2012). Connected component analysis

for Indian license plate infra-red and color image character

segmentation. IEEE International Conference on Compu-

tational Intelligence & Computing Research (ICCIC), 2012

(pp. 1–4). 18–20 Dec 2012. doi: 10.1109/ICCIC.2012.

6510323.

13. Zirari, F.; Ennaji, A.; Nicolas, S.; Mammass, D. (2013) ‘‘A

Document Image Segmentation System Using Analysis of

Connected Components. 12th International Conference on

Document Analysis and Recognition (ICDAR), 2013 (pp.

753–757) 25–28 Aug 2013. doi: 10.1109/ICDAR.2013.154.

14. Li, M., Zheng, X., Wan, X., Luo, H., Zhang, S., & Tan, L.

(2011). Segmentation of brain tissue based on connected

component labeling and mathematic morphology. 4th

International Conference on Biomedical Engineering and

Informatics (BMEI), 2011, 1, 482–485. doi:10.1109/BMEI.

2011.6098294.

15. Moftah, H. M., ella Hassanien, A. & Shoman, M. (2010). 3D

brain tumor segmentation scheme using K-mean clustering

and connected component labeling algorithms. 10th Inter-

national Conference on Intelligent Systems Design and

Applications (ISDA), 2010 (pp. 320–324). Nov 29 2010–

Dec 1 2010. doi: 10.1109/ISDA.2010.5687244.

16. Bellala Belahbib, F. Z., & Souami, F. (2012). Color image

segmentation by a genetic algorithm based clustering and

Connected Component Labeling. 24th International Con-

ference on Microelectronics (ICM), 2012 (pp. 1–4). 16–20

Dec 2012. doi: 10.1109/ICM.2012.6471432.

17. Choi, K. -S. (2012). Hierarchical block-based disparity

estimation. IEEE 1st Global Conference on Consumer

Electronics (GCCE), 2012 (pp. 493–494). 2–5 Oct 2012.

doi: 10.1109/GCCE.2012.6379668.

18. Zhu, S., & Yu, Y. (2012). Virtual view rendering based on

self-adaptive block matching disparity estimation. Interna-

tional Conference on Industrial Control and Electronics

Engineering (ICICEE), 2012 (pp. 947–950). 23–25 Aug

2012. doi: 10.1109/ICICEE.2012.251.

19. Wang, Z. -F., & Zheng, Z. -G. (2008). A region based stereo

matching algorithm using cooperative optimization. IEEE

Conference on Computer Vision and Pattern Recognition,

2008. CVPR 2008 (pp. 1–8). 23–28 June 2008. doi: 10.1109/

CVPR.2008.4587456.

20. Lu, D., & Du, Y. (2013). A two-step stereo correspondence

algorithm based on combination of feature-matching and

region-matching. 8th International Forum on Strategic

Technology (IFOST), 2013, 2, 51–55. doi:10.1109/IFOST.

2013.6616858.

21. Tkalcic, M., & Tasic, J. F. (2003). Colour spaces: percep-

tual, historical and applicational background. EUROCON

2003. Computer as a Tool. The IEEE Region 8 1, 304–308.

10.1109/EURCON.2003.1248032.

22. Docampo, J., Ramos, S., Taboada, G. L., Exposito, R. R.,

Tourino, J. & Doallo, R. (2013). Evaluation of Java for

general purpose GPU computing. 27th International Con-

ference on Advanced Information Networking and Appli-

cations Workshops (WAINA), 2013 (pp. 1398–1404). 25–28

March 2013. doi: 10.1109/WAINA.2013.234.

23. Kolmogorov, V., & Zabih, R. (2001). Computing visual

correspondence with occlusions using graph cuts. Pro-

ceedings of the Eighth IEEE International Conference on

Computer Vision ICCV 2001, 2, 508–515. doi:10.1109/

ICCV.2001.937668.

24. Miled, W.; Pesquet, J. C. (2006). Disparity map estimation

using a total variation bound. The 3rd Canadian Conference

on Computer and Robot Vision, 2006. (p 48) 7–9 June 2006.

doi: 10.1109/CRV.2006.28.

25. Scharstein, D., Szeliski, R., & Zabih, R. (2001). A taxon-

omy and evaluation of dense two-frame stereo correspon-

dence algorithms. Proceedings of the IEEE Workshop on

Stereo and Multi-Baseline Vision, 2001 (SMBV 2001) (pp.

131–140). doi: 10.1109/SMBV.2001.988771.

3D Res (2014) 5:14 Page 21 of 21 14

123

BIODATA

Name: Subhayan Mukherjee

Address: 122/1/1/3, Monohor Pukur Road,

 Opp. Elite Nursing Home,

 P.O: Kalighat,

 Kolkata - 700026,

 West Bengal.

E-mail: subhayan001@gmail.com

Mobile: 9742138607

Qualification: B.Tech Information Technology

 (West Bengal University of Technology, Kolkata,

West Bengal)

 M.Tech Information Technology

 (National Institute of Technology Karnataka, Surathkal)

